IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v8y2011i7p3032-3062d13280.html
   My bibliography  Save this article

Global Scenarios of Air Pollutant Emissions from Road Transport through to 2050

Author

Listed:
  • Takayuki Takeshita

    (Transdisciplinary Initiative for Global Sustainability, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan)

Abstract

This paper presents global scenarios of sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), and particulate matter (PM) emissions from road transport through to 2050, taking into account the potential impacts of: (1) the timing of air pollutant emission regulation implementation in developing countries; (2) global CO 2 mitigation policy implementation; and (3) vehicle cost assumptions, on study results. This is done by using a global energy system model treating the transport sector in detail. The major conclusions are the following. First, as long as non-developed countries adopt the same vehicle emission standards as in developed countries within a 30-year lag, global emissions of SO 2 , NO x , and PM from road vehicles decrease substantially over time. Second, light-duty vehicles and heavy-duty trucks make a large and increasing contribution to future global emissions of SO 2 , NO x , and PM from road vehicles. Third, the timing of air pollutant emission regulation implementation in developing countries has a large impact on future global emissions of SO 2 , NO x , and PM from road vehicles, whereas there is a possibility that global CO 2 mitigation policy implementation has a comparatively small impact on them .

Suggested Citation

  • Takayuki Takeshita, 2011. "Global Scenarios of Air Pollutant Emissions from Road Transport through to 2050," IJERPH, MDPI, vol. 8(7), pages 1-31, July.
  • Handle: RePEc:gam:jijerp:v:8:y:2011:i:7:p:3032-3062:d:13280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/8/7/3032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/8/7/3032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    2. Silveira, Semida & Khatiwada, Dilip, 2010. "Ethanol production and fuel substitution in Nepal--Opportunity to promote sustainable development and climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1644-1652, August.
    3. Schafer, Andreas & Victor, David G., 1999. "Global passenger travel: implications for carbon dioxide emissions," Energy, Elsevier, vol. 24(8), pages 657-679.
    4. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    5. Takeshita, Takayuki, 2009. "A strategy for introducing modern bioenergy into developing Asia to avoid dangerous climate change," Applied Energy, Elsevier, vol. 86(Supplemen), pages 222-232, November.
    6. Johansson, Bengt, 2009. "Will restrictions on CO2 emissions require reductions in transport demand?," Energy Policy, Elsevier, vol. 37(8), pages 3212-3220, August.
    7. Takeshita, Takayuki & Yamaji, Kenji, 2008. "Important roles of Fischer-Tropsch synfuels in the global energy future," Energy Policy, Elsevier, vol. 36(8), pages 2791-2802, August.
    8. Zachariadis, Theodoros, 2005. "Assessing policies towards sustainable transport in Europe: an integrated model," Energy Policy, Elsevier, vol. 33(12), pages 1509-1525, August.
    9. Tseng, Phillip & Lee, John & Friley, Paul, 2005. "A hydrogen economy: opportunities and challenges," Energy, Elsevier, vol. 30(14), pages 2703-2720.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Min & Dong, Peiwu & Ju, Yanbing & Li, Jiajun & Ran, Lun, 2023. "Effects of government subsidies on heavy-duty hydrogen fuel cell truck penetration: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeshita, Takayuki, 2012. "Assessing the co-benefits of CO2 mitigation on air pollutants emissions from road vehicles," Applied Energy, Elsevier, vol. 97(C), pages 225-237.
    2. Peeters, Paul & Dubois, Ghislain, 2010. "Tourism travel under climate change mitigation constraints," Journal of Transport Geography, Elsevier, vol. 18(3), pages 447-457.
    3. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    4. Meyer, I. & Leimbach, M. & Jaeger, C.C., 2007. "International passenger transport and climate change: A sector analysis in car demand and associated CO2 emissions from 2000 to 2050," Energy Policy, Elsevier, vol. 35(12), pages 6332-6345, December.
    5. Kyle, Page & Kim, Son H., 2011. "Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands," Energy Policy, Elsevier, vol. 39(5), pages 3012-3024, May.
    6. Schafer, Andreas, 2012. "Introducing behavioral change in transportation into energy/economy/environment models," Policy Research Working Paper Series 6234, The World Bank.
    7. Takeshita, Takayuki, 2011. "Competitiveness, role, and impact of microalgal biodiesel in the global energy future," Applied Energy, Elsevier, vol. 88(10), pages 3481-3491.
    8. Densing, Martin & Turton, Hal & Bäuml, Georg, 2012. "Conditions for the successful deployment of electric vehicles – A global energy system perspective," Energy, Elsevier, vol. 47(1), pages 137-149.
    9. Takeshita, Takayuki & Yamaji, Kenji, 2008. "Important roles of Fischer-Tropsch synfuels in the global energy future," Energy Policy, Elsevier, vol. 36(8), pages 2791-2802, August.
    10. Takayuki Takeshita & Kenji Yamaji, 2006. "Potential contribution of coal to the future global energy system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 8(1), pages 55-87, December.
    11. Diana Reckien & Maren Ewald & Ottmar Edenhofer & Matthias K. B. Liideke, 2007. "What Parameters Influence the Spatial Variations in CO2 Emissions from Road Traffic in Berlin? Implications for Urban Planning to Reduce Anthropogenic CO2 Emissions," Urban Studies, Urban Studies Journal Limited, vol. 44(2), pages 339-355, February.
    12. Daly, Hannah E. & Ramea, Kalai & Chiodi, Alessandro & Yeh, Sonia & Gargiulo, Maurizio & Gallachóir, Brian Ó, 2014. "Incorporating travel behaviour and travel time into TIMES energy system models," Applied Energy, Elsevier, vol. 135(C), pages 429-439.
    13. Maria Grahn & Erica Klampfl & Margaret Whalen & Timothy Wallington, 2013. "Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy," Sustainability, MDPI, vol. 5(5), pages 1-18, April.
    14. Takayuki Takeshita & Kenji Yamaji, 2006. "Potential contribution of coal to the future global energy system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 8(1), pages 55-87, December.
    15. Schafer, Andreas & Jacoby, Henry D., 2006. "Vehicle technology under CO2 constraint: a general equilibrium analysis," Energy Policy, Elsevier, vol. 34(9), pages 975-985, June.
    16. Phil Goodwin & Kurt Van Dender, 2013. "'Peak Car' - Themes and Issues," Transport Reviews, Taylor & Francis Journals, vol. 33(3), pages 243-254, May.
    17. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    18. Diego Bairrão & João Soares & José Almeida & John F. Franco & Zita Vale, 2023. "Green Hydrogen and Energy Transition: Current State and Prospects in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, January.
    19. Sudhakar Yedla, 2007. "Choosing between Global and Local Emission Control Strategies in Urban Transport Sector, Which way to go?," Development Economics Working Papers 22352, East Asian Bureau of Economic Research.
    20. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:8:y:2011:i:7:p:3032-3062:d:13280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.