Technology adoption and carbon emissions with dynamic trading among heterogeneous agents
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2021.105263
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chi, Chunjie & Ma, Tieju & Zhu, Bing, 2012. "Towards a low-carbon economy: Coping with technological bifurcations with a carbon tax," Energy Economics, Elsevier, vol. 34(6), pages 2081-2088.
- McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
- Messner, S. & Golodnikov, A. & Gritsevskii, A., 1996. "A stochastic version of the dynamic linear programming model MESSAGE III," Energy, Elsevier, vol. 21(9), pages 775-784.
- Klaassen, Ger & Nentjes, Andries & Smith, Mark, 2005. "Testing the theory of emissions trading: Experimental evidence on alternative mechanisms for global carbon trading," Ecological Economics, Elsevier, vol. 53(1), pages 47-58, April.
- McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
- Fredrik Hedenus, Christian Azar and Kristian Lindgren, 2006. "Induced Technological Change in a Limited Foresight Optimization Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 109-122.
- Sungbae An & Yongsung Chang & Sun-Bin Kim, 2009.
"Can a Representative-Agent Model Represent a Heterogeneous-Agent Economy,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 1(2), pages 29-54, July.
- Sungbae An & Yongsung Chang & Sun-Bin Kim, 2007. "Can a Representative Agent Model Represent a Heterogeneous Agent Economy?," Discussion Paper Series 0714, Institute of Economic Research, Korea University.
- Sungbae An & Yongsung Chang & Sun-Bin Kim, 2008. "Can a Representative-Agent Model Represent a Heterogeneous-Agent Economy?," Microeconomics Working Papers 22056, East Asian Bureau of Economic Research.
- Sungbae An & Yongsung Chang & Sun-Bin Kim, 2008. "Can a Representative-Agent Model Represent a Heterogeneous-Agent Economy?," RCER Working Papers 542, University of Rochester - Center for Economic Research (RCER).
- Kanudia, Amit & Loulou, Richard, 1998. "Robust responses to climate change via stochastic MARKAL: The case of Quebec," European Journal of Operational Research, Elsevier, vol. 106(1), pages 15-30, April.
- Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
- Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
- Y. Ermoliev & M. Michalevich & A. Nentjes, 2000. "Markets for Tradeable Emission and Ambient Permits: A Dynamic Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 15(1), pages 39-56, January.
- Johnson, Nils & Strubegger, Manfred & McPherson, Madeleine & Parkinson, Simon C. & Krey, Volker & Sullivan, Patrick, 2017. "A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system," Energy Economics, Elsevier, vol. 64(C), pages 651-664.
- Chen, Huayi & Ma, Tieju, 2014. "Technology adoption with limited foresight and uncertain technological learning," European Journal of Operational Research, Elsevier, vol. 239(1), pages 266-275.
- Martinsen, Dag & Krey, Volker & Markewitz, Peter, 2007. "Implications of high energy prices for energy system and emissions--The response from an energy model for Germany," Energy Policy, Elsevier, vol. 35(9), pages 4504-4515, September.
- Geroski, P. A., 2000.
"Models of technology diffusion,"
Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
- Geroski, Paul A, 1999. "Models of Technology Diffusion," CEPR Discussion Papers 2146, C.E.P.R. Discussion Papers.
- Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
- Ma, T. & Grubler, A. & Nakamori, Y., 2009. "Modeling technology adoptions for sustainable development under increasing returns, uncertainty, and heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 296-306, May.
- Chen, Huayi & Zhou, P., 2019. "Modeling systematic technology adoption: Can one calibrated representative agent represent heterogeneous agents?," Omega, Elsevier, vol. 89(C), pages 257-270.
- Tieju Ma, 2010. "Coping with Uncertainties in Technological Learning," Management Science, INFORMS, vol. 56(1), pages 192-201, January.
- Eaves, James & Williams, Jeffrey & Power, Gabriel J., 2016. "Do traders strategically time their pledges during real-world Walrasian auctions?," Journal of Banking & Finance, Elsevier, vol. 71(C), pages 109-118.
- Per Krusell & Anthony A. Smith & Jr., 1998.
"Income and Wealth Heterogeneity in the Macroeconomy,"
Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 867-896, October.
- Per Krusell & Anthony A. Smith, Jr., "undated". "Income and Wealth Heterogeneity in the Macroeconomy," GSIA Working Papers 1997-37, Carnegie Mellon University, Tepper School of Business.
- Krusell, P & Smith Jr, A-A, 1995. "Income and Wealth Heterogeneity in the Macroeconomic," RCER Working Papers 399, University of Rochester - Center for Economic Research (RCER).
- Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
- Yi Wen, 2009. "When does heterogeneity matter?," Working Papers 2009-024, Federal Reserve Bank of St. Louis.
- Valentina Bosetti & Emanuele Massetti & Massimo Tavoni, 2007.
"The WITCH Model. Structure, Baseline, Solutions,"
Working Papers
2007.10, Fondazione Eni Enrico Mattei.
- Bosetti, Valentina & Massetti, Emanuele & Tavoni, Massimo, 2007. "The WITCH Model. Structure, Baseline, Solutions," Climate Change Modelling and Policy Working Papers 12064, Fondazione Eni Enrico Mattei (FEEM).
- Barreto, Leonardo & Kypreos, Socrates, 2004. "Emissions trading and technology deployment in an energy-systems "bottom-up" model with technology learning," European Journal of Operational Research, Elsevier, vol. 158(1), pages 243-261, October.
- Leonardo Barreto, Socrates Kypreos, 2002. "Multi-regional technological learning in the energysystems MARKAL model," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 17(3), pages 189-213.
- Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
- Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
- Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Huayi & Zhou, P., 2019. "Modeling systematic technology adoption: Can one calibrated representative agent represent heterogeneous agents?," Omega, Elsevier, vol. 89(C), pages 257-270.
- Chen, Huayi & Ma, Tieju, 2014. "Technology adoption with limited foresight and uncertain technological learning," European Journal of Operational Research, Elsevier, vol. 239(1), pages 266-275.
- Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
- Ma, Tieju & Chen, Huayi, 2015. "Adoption of an emerging infrastructure with uncertain technological learning and spatial reconfiguration," European Journal of Operational Research, Elsevier, vol. 243(3), pages 995-1003.
- DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
- Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
- Chenhao Fang & Tieju Ma, 2021. "Technology adoption with carbon emission trading mechanism: modeling with heterogeneous agents and uncertain carbon price," Annals of Operations Research, Springer, vol. 300(2), pages 577-600, May.
- Price, James & Keppo, Ilkka, 2017. "Modelling to generate alternatives: A technique to explore uncertainty in energy-environment-economy models," Applied Energy, Elsevier, vol. 195(C), pages 356-369.
- Tieju Ma, 2010. "Coping with Uncertainties in Technological Learning," Management Science, INFORMS, vol. 56(1), pages 192-201, January.
- Svensson, Elin & Strömberg, Ann-Brith & Patriksson, Michael, 2011. "A model for optimization of process integration investments under uncertainty," Energy, Elsevier, vol. 36(5), pages 2733-2746.
- Chi, Chunjie & Ma, Tieju & Zhu, Bing, 2012. "Towards a low-carbon economy: Coping with technological bifurcations with a carbon tax," Energy Economics, Elsevier, vol. 34(6), pages 2081-2088.
- Spalding-Fecher, Randall & Joyce, Brian & Winkler, Harald, 2017. "Climate change and hydropower in the Southern African Power Pool and Zambezi River Basin: System-wide impacts and policy implications," Energy Policy, Elsevier, vol. 103(C), pages 84-97.
- Grazzini, Jakob & Richiardi, Matteo, 2015.
"Estimation of ergodic agent-based models by simulated minimum distance,"
Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 148-165.
- Jakob Grazzini & Matteo Richiardi, 2014. "Estimation of Ergodic Agent-Based Models by Simulated Minimum Distance," Economics Papers 2014-W07, Economics Group, Nuffield College, University of Oxford.
- Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
- Jayadev, Gopika & Leibowicz, Benjamin D. & Kutanoglu, Erhan, 2020. "U.S. electricity infrastructure of the future: Generation and transmission pathways through 2050," Applied Energy, Elsevier, vol. 260(C).
- Fang, Chenhao & Ma, Tieju, 2020. "Stylized agent-based modeling on linking emission trading systems and its implications for China's practice," Energy Economics, Elsevier, vol. 92(C).
- Rout, Ullash K. & Fahl, Ulrich & Remme, Uwe & Blesl, Markus & Voß, Alfred, 2009. "Endogenous implementation of technology gap in energy optimization models--a systematic analysis within TIMES G5 model," Energy Policy, Elsevier, vol. 37(7), pages 2814-2830, July.
- Martinsen, Dag & Funk, Carolin & Linssen, Jochen, 2010. "Biomass for transportation fuels--A cost-effective option for the German energy supply?," Energy Policy, Elsevier, vol. 38(1), pages 128-140, January.
- Densing, Martin & Turton, Hal & Bäuml, Georg, 2012. "Conditions for the successful deployment of electric vehicles – A global energy system perspective," Energy, Elsevier, vol. 47(1), pages 137-149.
- Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
More about this item
Keywords
OR in societal problem analysis; Technology adoption; Heterogeneous interacting agents; Equilibrium prices and trading volumes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:99:y:2021:i:c:s0140988321001687. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.