IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48424-9.html
   My bibliography  Save this article

Integrated assessment modeling of a zero-emissions global transportation sector

Author

Listed:
  • Simone Speizer

    (Pacific Northwest National Laboratory)

  • Jay Fuhrman

    (Pacific Northwest National Laboratory)

  • Laura Aldrete Lopez

    (ClimateWorks Foundation)

  • Mel George

    (University of Maryland)

  • Page Kyle

    (Pacific Northwest National Laboratory)

  • Seth Monteith

    (ClimateWorks Foundation)

  • Haewon McJeon

    (Korea Advanced Institute of Science and Technology)

Abstract

Currently responsible for over one fifth of carbon emissions worldwide, the transportation sector will need to undergo a substantial technological transition to ensure compatibility with global climate goals. Few studies have modeled strategies to achieve zero emissions across all transportation modes, including aviation and shipping, alongside an integrated analysis of feedbacks on other sectors and environmental systems. Here, we use a global integrated assessment model to evaluate deep decarbonization scenarios for the transportation sector consistent with maintaining end-of-century warming below 1.5 °C, considering varied timelines for fossil fuel phase-out and implementation of advanced alternative technologies. We highlight the leading low carbon technologies for each transportation mode, finding that electrification contributes most to decarbonization across the sector. Biofuels and hydrogen are particularly important for aviation and shipping. Our most ambitious scenario eliminates transportation emissions by mid-century, contributing substantially to achieving climate targets but requiring rapid technological shifts with integrated impacts on fuel demands and availability and upstream energy transitions.

Suggested Citation

  • Simone Speizer & Jay Fuhrman & Laura Aldrete Lopez & Mel George & Page Kyle & Seth Monteith & Haewon McJeon, 2024. "Integrated assessment modeling of a zero-emissions global transportation sector," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48424-9
    DOI: 10.1038/s41467-024-48424-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48424-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48424-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ronald A. Halim & Lucie Kirstein & Olaf Merk & Luis M. Martinez, 2018. "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment," Sustainability, MDPI, vol. 10(7), pages 1-30, June.
    2. Pietzcker, Robert C. & Longden, Thomas & Chen, Wenying & Fu, Sha & Kriegler, Elmar & Kyle, Page & Luderer, Gunnar, 2014. "Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models," Energy, Elsevier, vol. 64(C), pages 95-108.
    3. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    4. Samuel Carrara & Thomas Longden, 2017. "Freight Futures: The Potential Impact of Road Freight on Climate Policy," Working Papers 2017.08, Fondazione Eni Enrico Mattei.
    5. Michael Traut & Alice Larkin & Kevin Anderson & Christophe McGlade & Maria Sharmina & Tristan Smith, 2018. "CO2 abatement goals for international shipping," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 1066-1075, September.
    6. M. Sharmina & O. Y. Edelenbosch & C. Wilson & R. Freeman & D. E. H. J. Gernaat & P. Gilbert & A. Larkin & E. W. Littleton & M. Traut & D. P. van Vuuren & N. E. Vaughan & F. R. Wood & C. Le Quéré, 2021. "Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2°C," Climate Policy, Taylor & Francis Journals, vol. 21(4), pages 455-474, April.
    7. David McCollum & Volker Krey & Peter Kolp & Yu Nagai & Keywan Riahi, 2014. "Transport electrification: A key element for energy system transformation and climate stabilization," Climatic Change, Springer, vol. 123(3), pages 651-664, April.
    8. Mishra, Gouri S. & Kyle, Page & Teter, Jacob & Morrison, Geoffrey M. & Kim, Son H. & Yeh, Sonia, 2013. "Transportation Module of Global Change Assessment Model (GCAM): Model Documentation- Version 1.0," Institute of Transportation Studies, Working Paper Series qt8nk2c96d, Institute of Transportation Studies, UC Davis.
    9. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    10. Kyle, Page & Kim, Son H., 2011. "Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands," Energy Policy, Elsevier, vol. 39(5), pages 3012-3024, May.
    11. David L. McCollum & Charlie Wilson & Michela Bevione & Samuel Carrara & Oreane Y. Edelenbosch & Johannes Emmerling & Céline Guivarch & Panagiotis Karkatsoulis & Ilkka Keppo & Volker Krey & Zhenhong Li, 2018. "Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles," Nature Energy, Nature, vol. 3(8), pages 664-673, August.
    12. Paul Wolfram & Page Kyle & Xin Zhang & Savvas Gkantonas & Steven Smith, 2022. "Using ammonia as a shipping fuel could disturb the nitrogen cycle," Nature Energy, Nature, vol. 7(12), pages 1112-1114, December.
    13. Jay Fuhrman & Candelaria Bergero & Maridee Weber & Seth Monteith & Frances M. Wang & Andres F. Clarens & Scott C. Doney & William Shobe & Haewon McJeon, 2023. "Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system," Nature Climate Change, Nature, vol. 13(4), pages 341-350, April.
    14. Andreas Goldmann & Waldemar Sauter & Marcel Oettinger & Tim Kluge & Uwe Schröder & Joerg R. Seume & Jens Friedrichs & Friedrich Dinkelacker, 2018. "A Study on Electrofuels in Aviation," Energies, MDPI, vol. 11(2), pages 1-23, February.
    15. McCollum, David & Yang, Christopher, 2009. "Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy implications," Energy Policy, Elsevier, vol. 37(12), pages 5580-5596, December.
    16. Ajay Gambhir & Mel George & Haewon McJeon & Nigel W. Arnell & Daniel Bernie & Shivika Mittal & Alexandre C. Köberle & Jason Lowe & Joeri Rogelj & Seth Monteith, 2022. "Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways," Nature Climate Change, Nature, vol. 12(1), pages 88-96, January.
    17. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    18. Candelaria Bergero & Greer Gosnell & Dolf Gielen & Seungwoo Kang & Morgan Bazilian & Steven J. Davis, 2023. "Pathways to net-zero emissions from aviation," Nature Sustainability, Nature, vol. 6(4), pages 404-414, April.
    19. Lynnette Dray & Andreas W. Schäfer & Carla Grobler & Christoph Falter & Florian Allroggen & Marc E. J. Stettler & Steven R. H. Barrett, 2022. "Cost and emissions pathways towards net-zero climate impacts in aviation," Nature Climate Change, Nature, vol. 12(10), pages 956-962, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    2. Paladugula, Anantha Lakshmi & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Pal, Sarbojit & Clarke, Leon & Evans, Meredydd & Kyle, Page & Koti, Poonam Nagar & Parikh, Kirit & Qamar, Sha, 2018. "A multi-model assessment of energy and emissions for India's transportation sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 10-18.
    3. Yan, Shiyu & De Bruin, Kelly & Dennehy, Emer & Curtis, John, 2020. "A freight transport demand, energy and emission model with technological choices," Papers WP669, Economic and Social Research Institute (ESRI).
    4. Shuanghui Bao & Osamu Nishiura & Shinichiro Fujimori & Ken Oshiro & Runsen Zhang, 2020. "Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO 2 Emissions in Asia," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    5. Ajanovic, Amela & Haas, Reinhard, 2017. "The impact of energy policies in scenarios on GHG emission reduction in passenger car mobility in the EU-15," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1088-1096.
    6. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
    7. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    8. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    10. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    11. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    13. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    14. Seungho Jeon & Minyoung Roh & Almas Heshmati & Suduk Kim, 2020. "An Assessment of Corporate Average Fuel Economy Standards for Passenger Cars in South Korea," Energies, MDPI, vol. 13(17), pages 1-13, September.
    15. Panagiotis Fragkos, 2022. "Decarbonizing the International Shipping and Aviation Sectors," Energies, MDPI, vol. 15(24), pages 1-25, December.
    16. Tang, Bao-Jun & Li, Xiao-Yi & Yu, Biying & Wei, Yi-Ming, 2019. "Sustainable development pathway for intercity passenger transport: A case study of China," Applied Energy, Elsevier, vol. 254(C).
    17. Wang, Jiqiang & Wang, Ya & Zhang, Shaohui & Fan, Chun & Zhou, Nanqing & Liu, Jinhui & Li, Xin & Liu, Yun & Hou, Xiujun & Yi, Bowen, 2024. "Accounting of aviation carbon emission in developing countries based on flight-level ADS-B data," Applied Energy, Elsevier, vol. 358(C).
    18. Zhu, Qianru & Leibowicz, Benjamin D. & Busby, Joshua W. & Shidore, Sarang & Adelman, David E. & Olmstead, Sheila M., 2022. "Enhancing policy realism in energy system optimization models: Politically feasible decarbonization pathways for the United States," Energy Policy, Elsevier, vol. 161(C).
    19. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48424-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.