IDEAS home Printed from https://ideas.repec.org/p/ind/igiwpp/2007-009.html
   My bibliography  Save this paper

Choosing between global and local emission control strategies in urban transport sector, which way to go?

Author

Listed:
  • Sudhakar Yedla

    (Indira Gandhi Institute of Development Research)

Abstract

Cities are engrossed with response strategies for the control of local pollution from transport sector. However, as the transport sector has been growing as major GHG contributor, and there is an increasing scope for investment and support from the international financial institutions, cities often get into confusion on whether to go by local emission control strategies (LEMS) or adopt GHG mitigation strategies (GEMS). This paper presents a comparison between GHG mitigation strategies and local emission control strategies and their potential in controlling non-target pollutant emissions in concurrence with their economic performance. Comparative analysis based on multiple constraint optimization model for Mumbai transport system planning for the next 20 years and incremental cost analysis had revealed that strategies targeting the mitigation of total suspended particulate matter (TSP) could also reduce carbon dioxide (CO2) emissions (as non-target emission) and vice-versa. Co-benefits of emission reduction from local emission control strategies are higher compared to that of GHG mitigation strategies. In the incremental cost analysis, both GHG mitigation strategies and local emission control strategies were found performing comparably. Thus, local emission control strategies with better emission reduction potential and also better local acceptance are more favourable than GHG mitigation strategies in long term transportation planning. Therefore, it is recommended that the development projects in urban transportation planning and management may consider local emission control strategies rather than GHG mitigation strategies. The co-benefits (CO2 reduction) of local emission control strategies would still play the attraction for international funding agencies to invest in transport sector and also for CDM opportunities.

Suggested Citation

  • Sudhakar Yedla, 2007. "Choosing between global and local emission control strategies in urban transport sector, which way to go?," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2007-009, Indira Gandhi Institute of Development Research, Mumbai, India.
  • Handle: RePEc:ind:igiwpp:2007-009
    as

    Download full text from publisher

    File URL: http://www.igidr.ac.in/pdf/publication/WP-2007-009.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michaelis, Laurie & Davidson, Ogunlade, 1996. "GHG mitigation in the transport sector," Energy Policy, Elsevier, vol. 24(10-11), pages 969-984.
    2. Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sudhakar Yedla, 2007. "Choosing between Global and Local Emission Control Strategies in Urban Transport Sector, Which way to go?," Development Economics Working Papers 22352, East Asian Bureau of Economic Research.
    2. Yedla, Sudhakar & Shrestha, Ram M. & Anandarajah, Gabrial, 2005. "Environmentally sustainable urban transportation--comparative analysis of local emission mitigation strategies vis-a-vis GHG mitigation strategies," Transport Policy, Elsevier, vol. 12(3), pages 245-254, May.
    3. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    4. Hellsmark, Hans & Jacobsson, Staffan, 2012. "Realising the potential of gasified biomass in the European Union—Policy challenges in moving from demonstration plants to a larger scale diffusion," Energy Policy, Elsevier, vol. 41(C), pages 507-518.
    5. Gupta, Monika, 2016. "Willingness to pay for carbon tax: A study of Indian road passenger transport," Transport Policy, Elsevier, vol. 45(C), pages 46-54.
    6. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.
    7. Persson, Tobias A. & Azar, Christian & Lindgren, Kristian, 2006. "Allocation of CO2 emission permits--Economic incentives for emission reductions in developing countries," Energy Policy, Elsevier, vol. 34(14), pages 1889-1899, September.
    8. Persson, Tobias A. & Azar, C. & Johansson, D. & Lindgren, K., 2007. "Major oil exporters may profit rather than lose, in a carbon-constrained world," Energy Policy, Elsevier, vol. 35(12), pages 6346-6353, December.
    9. Park, Young-Kwon & Yoo, Myung Lang & Lee, Hyung Won & Park, Sung Hoon & Jung, Sang-Chul & Park, Sang-Sook & Kim, Sang-Chai, 2012. "Effects of operation conditions on pyrolysis characteristics of agricultural residues," Renewable Energy, Elsevier, vol. 42(C), pages 125-130.
    10. Chen, Huayi & Ma, Tieju, 2021. "Technology adoption and carbon emissions with dynamic trading among heterogeneous agents," Energy Economics, Elsevier, vol. 99(C).
    11. Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Daniel J. A. Johansson & Mariliis Lehtveer, 2022. "emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves," Papers 2212.12060, arXiv.org.
    12. Gül, Timur & Kypreos, Socrates & Turton, Hal & Barreto, Leonardo, 2009. "An energy-economic scenario analysis of alternative fuels for personal transport using the Global Multi-regional MARKAL model (GMM)," Energy, Elsevier, vol. 34(10), pages 1423-1437.
    13. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
    14. Yuhong Wang & Xin Yao & Pengfei Yuan, 2015. "Strategic Adjustment of China’s Power Generation Capacity Structure Under the Constraint of Carbon Emission," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 421-435, October.
    15. Sebastian Lubjuhn & Sandra Venghaus, 2024. "Unlocking the potential of the bioeconomy for climate change reduction: The optimal use of lignocellulosic biomass in Germany," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 144-159, February.
    16. Panos, Evangelos & Kannan, Ramachandran, 2016. "The role of domestic biomass in electricity, heat and grid balancing markets in Switzerland," Energy, Elsevier, vol. 112(C), pages 1120-1138.
    17. Martinsen, Dag & Funk, Carolin & Linssen, Jochen, 2010. "Biomass for transportation fuels--A cost-effective option for the German energy supply?," Energy Policy, Elsevier, vol. 38(1), pages 128-140, January.
    18. Hedenus, Fredrik & Azar, Christian, 2005. "Estimates of trends in global income and resource inequalities," Ecological Economics, Elsevier, vol. 55(3), pages 351-364, November.
    19. Arora, Akhil & Zantye, Manali S. & Hasan, M.M. Faruque, 2022. "Sustainable hydrogen manufacturing via renewable-integrated intensified process for refueling stations," Applied Energy, Elsevier, vol. 311(C).
    20. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ind:igiwpp:2007-009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamprasad M. Pujar (email available below). General contact details of provider: https://edirc.repec.org/data/igidrin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.