My bibliography
Save this item
Numerical investigations of flow field designs for vanadium redox flow batteries
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yin, Cong & Guo, Shaoyun & Fang, Honglin & Liu, Jiayi & Li, Yang & Tang, Hao, 2015. "Numerical and experimental studies of stack shunt current for vanadium redox flow battery," Applied Energy, Elsevier, vol. 151(C), pages 237-248.
- Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
- Leung, P. & Martin, T. & Liras, M. & Berenguer, A.M. & Marcilla, R. & Shah, A. & An, L. & Anderson, M.A. & Palma, J., 2017. "Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries," Applied Energy, Elsevier, vol. 197(C), pages 318-326.
- Wei, Zhongbao & Zhao, Jiyun & Xiong, Binyu, 2014. "Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies," Applied Energy, Elsevier, vol. 135(C), pages 1-10.
- Hsu, Ning-Yih & Devi, Nitika & Lin, Yu-I & Hu, Yi-Hsin & Ku, Hung-Hsien & Arpornwichanop, Amornchai & Chen, Yong-Song, 2022. "Study on the effect of electrode configuration on the performance of a hydrogen/vanadium redox flow battery," Renewable Energy, Elsevier, vol. 190(C), pages 658-663.
- Bhattarai, Arjun & Wai, Nyunt & Schweiss, Rüdiger & Whitehead, Adam & Scherer, Günther G. & Ghimire, Purna C. & Lim, Tuti M. & Hng, Huey Hoon, 2019. "Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level," Applied Energy, Elsevier, vol. 236(C), pages 437-443.
- Badrinarayanan, Rajagopalan & Tseng, King Jet & Soong, Boon Hee & Wei, Zhongbao, 2017. "Modelling and control of vanadium redox flow battery for profile based charging applications," Energy, Elsevier, vol. 141(C), pages 1479-1488.
- Wei, L. & Zhao, T.S. & Zhao, G. & An, L. & Zeng, L., 2016. "A high-performance carbon nanoparticle-decorated graphite felt electrode for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 176(C), pages 74-79.
- Zhang, Kaiyue & Xiong, Jing & Yan, Chuanwei & Tang, Ao, 2020. "In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design," Applied Energy, Elsevier, vol. 272(C).
- Yin, Cong & Gao, Yan & Guo, Shaoyun & Tang, Hao, 2014. "A coupled three dimensional model of vanadium redox flow battery for flow field designs," Energy, Elsevier, vol. 74(C), pages 886-895.
- Fengming Chu & Wen Lu & Dailong Zhai & Guozhen Xiao & Guoan Yang, 2022. "Mass transfer behavior in electrode and battery performance analysis of organic flow battery [Control system design for micro-tubular solid oxide fuel cells]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 494-505.
- Ma, Qiang & Fu, Wenxuan & Zhao, Lijuan & Chen, Zhenqian & Su, Huaneng & Xu, Qian, 2023. "A double-layer electrode for the negative side of deep eutectic solvent electrolyte-based vanadium-iron redox flow battery," Energy, Elsevier, vol. 265(C).
- Li, Yubai & Zhou, Zhifu & Liu, Xianglei & Wu, Wei-Tao, 2019. "Modeling of PEM fuel cell with thin MEA under low humidity operating condition," Applied Energy, Elsevier, vol. 242(C), pages 1513-1527.
- Wang, Limei & Cheng, Yong & Zhao, Xiuliang, 2015. "Influence of connecting plate resistance upon LiFePO4 battery performance," Applied Energy, Elsevier, vol. 147(C), pages 353-360.
- Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
- Ghimire, Purna C. & Bhattarai, Arjun & Schweiss, Rüdiger & Scherer, Günther G. & Wai, Nyunt & Yan, Qingyu, 2018. "A comprehensive study of electrode compression effects in all vanadium redox flow batteries including locally resolved measurements," Applied Energy, Elsevier, vol. 230(C), pages 974-982.
- Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
- Tugrul Y. Ertugrul & Michael. C. Daugherty & Jacob R. Houser & Douglas S. Aaron & Matthew M. Mench, 2020. "Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture," Energies, MDPI, vol. 13(18), pages 1-17, September.
- Yang, Xiao-Guang & Ye, Qiang & Cheng, Ping & Zhao, Tim S., 2015. "Effects of the electric field on ion crossover in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 145(C), pages 306-319.
- Wang, Tao & Fu, Jiahui & Zheng, Menglian & Yu, Zitao, 2018. "Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 227(C), pages 613-623.
- Kim, Dong Kyu & Yoon, Sang Jun & Lee, Jaeho & Kim, Sangwon, 2018. "Parametric study and flow rate optimization of all-vanadium redox flow batteries," Applied Energy, Elsevier, vol. 228(C), pages 891-901.
- Kim, Jungmyung & Park, Heesung, 2017. "Experimental analysis of discharge characteristics in vanadium redox flow battery," Applied Energy, Elsevier, vol. 206(C), pages 451-457.
- Longchun Zhong & Fengming Chu, 2023. "A Novel Biomimetic Lung-Shaped Flow Field for All-Vanadium Redox Flow Battery," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
- Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode," Applied Energy, Elsevier, vol. 213(C), pages 293-305.
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
- Snigdha Saha & Kranthi Kumar Maniam & Shiladitya Paul & Venkata Suresh Patnaikuni, 2023. "Hydrodynamic and Electrochemical Analysis of Compression and Flow Field Designs in Vanadium Redox Flow Batteries," Energies, MDPI, vol. 16(17), pages 1-33, August.
- Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
- Sun, Jie & Zheng, Menglian & Yang, Zhongshu & Yu, Zitao, 2019. "Flow field design pathways from lab-scale toward large-scale flow batteries," Energy, Elsevier, vol. 173(C), pages 637-646.
- Guarnieri, Massimo & Trovò, Andrea & D'Anzi, Angelo & Alotto, Piergiorgio, 2018. "Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments," Applied Energy, Elsevier, vol. 230(C), pages 1425-1434.
- Wei, L. & Zhao, T.S. & Zeng, L. & Zhou, X.L. & Zeng, Y.K., 2016. "Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries," Applied Energy, Elsevier, vol. 180(C), pages 386-391.
- Cheng, Ziqiang & Tenny, Kevin M. & Pizzolato, Alberto & Forner-Cuenca, Antoni & Verda, Vittorio & Chiang, Yet-Ming & Brushett, Fikile R. & Behrou, Reza, 2020. "Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods," Applied Energy, Elsevier, vol. 279(C).
- Duan, Z.N. & Qu, Z.G. & Wang, Q. & Wang, J.J., 2019. "Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance," Applied Energy, Elsevier, vol. 250(C), pages 1632-1640.
- Zheng, Qiong & Zhang, Huamin & Xing, Feng & Ma, Xiangkun & Li, Xianfeng & Ning, Guiling, 2014. "A three-dimensional model for thermal analysis in a vanadium flow battery," Applied Energy, Elsevier, vol. 113(C), pages 1675-1685.
- Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
- Xiao, Guozhen & Yang, Guoan & Zhao, Sixiang & Xia, Lixing & Chu, Fengming & Tan, Zhan'ao, 2022. "Battery performance optimization and multi-component transport enhancement of organic flow battery based on channel section reconstruction," Energy, Elsevier, vol. 258(C).
- Gao, Qingchen & Bao, Zhiming & Li, Weizhuo & Gong, Zhichao & Fan, Linhao & Jiao, Kui, 2024. "Performance analysis and gradient-porosity electrode design of vanadium redox flow batteries based on CFD simulations under open-source environment," Energy, Elsevier, vol. 289(C).
- Guarnieri, Massimo & Trovò, Andrea & Picano, Francesco, 2020. "Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method," Applied Energy, Elsevier, vol. 262(C).
- Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
- Xu, Q. & Zhao, T.S. & Zhang, C., 2014. "Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 130(C), pages 139-147.
- Pugach, M. & Kondratenko, M. & Briola, S. & Bischi, A., 2018. "Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover," Applied Energy, Elsevier, vol. 226(C), pages 560-569.
- Mohamed, M.R. & Leung, P.K. & Sulaiman, M.H., 2015. "Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system," Applied Energy, Elsevier, vol. 137(C), pages 402-412.
- Pengfei Zhang & Xi Liu & Junjie Fu & Fengming Chu, 2023. "Mass Transfer Behaviors and Battery Performance of a Ferrocyanide-Based Organic Redox Flow Battery with Different Electrode Shapes," Energies, MDPI, vol. 16(6), pages 1-17, March.
- Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
- Wei, L. & Zhao, T.S. & Xu, Q. & Zhou, X.L. & Zhang, Z.H., 2017. "In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 190(C), pages 1112-1118.
- Di Blasi, A. & Briguglio, N. & Di Blasi, O. & Antonucci, V., 2014. "Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery," Applied Energy, Elsevier, vol. 125(C), pages 114-122.