IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6311-d1229221.html
   My bibliography  Save this article

Hydrodynamic and Electrochemical Analysis of Compression and Flow Field Designs in Vanadium Redox Flow Batteries

Author

Listed:
  • Snigdha Saha

    (Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India)

  • Kranthi Kumar Maniam

    (Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK)

  • Shiladitya Paul

    (Materials Innovation Centre, School of Engineering, University of Leicester, Leicester LE1 7RH, UK
    Materials Performance and Integrity Group, TWI, Granta Park, Cambridge CB21 6AL, UK)

  • Venkata Suresh Patnaikuni

    (Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India)

Abstract

This numerical study investigates compression and flow field design effects on electrode behaviour in vanadium redox flow batteries (VRFBs). Through 3D simulations and analysis of various flow field designs, including conventional, serpentine, interdigitated, and parallel configurations, this study investigates three compression scenarios: uncompressed, non-homogeneously compressed, and homogeneously compressed electrodes. Hydrodynamic and electrochemical analyses reveal the impact on velocity, pressure, current density, overpotential, and charge–discharge performance. Interdigitated flow field is found to display the lowest charging potential and highest discharging potential among all flow fields under all three compression scenarios. Moreover, uncompressed electrode condition shows the conservative estimates of an average charging potential of 1.3647 V and average discharging potential of 1.3231 V in the case of interdigitated flow field, while compressed electrode condition and the non-homogeneously compressed electrode condition show an average charging potential of 1.3922 V and 1.3777 V, and an average discharging potential of 1.3019 V and 1.3224 V, respectively. Results highlight the significance of non-uniform compression while modelling and analysing the performance of VRFBs as it is a more realistic representation compared to the no-compression or homogeneous compression of the electrodes. The findings of this work provide insights for optimising VRFB performance by considering compression and flow field design.

Suggested Citation

  • Snigdha Saha & Kranthi Kumar Maniam & Shiladitya Paul & Venkata Suresh Patnaikuni, 2023. "Hydrodynamic and Electrochemical Analysis of Compression and Flow Field Designs in Vanadium Redox Flow Batteries," Energies, MDPI, vol. 16(17), pages 1-33, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6311-:d:1229221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Igor Iwakiri & Tiago Antunes & Helena Almeida & João P. Sousa & Rita Bacelar Figueira & Adélio Mendes, 2021. "Redox Flow Batteries: Materials, Design and Prospects," Energies, MDPI, vol. 14(18), pages 1-45, September.
    2. Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
    3. Tugrul Y. Ertugrul & Michael. C. Daugherty & Jacob R. Houser & Douglas S. Aaron & Matthew M. Mench, 2020. "Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture," Energies, MDPI, vol. 13(18), pages 1-17, September.
    4. Yin, Cong & Gao, Yan & Guo, Shaoyun & Tang, Hao, 2014. "A coupled three dimensional model of vanadium redox flow battery for flow field designs," Energy, Elsevier, vol. 74(C), pages 886-895.
    5. Chin-Lung Hsieh & Po-Hong Tsai & Ning-Yih Hsu & Yong-Song Chen, 2019. "Effect of Compression Ratio of Graphite Felts on the Performance of an All-Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(2), pages 1-11, January.
    6. Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
    7. Chih-Hsun Chang & Han-Wen Chou & Ning-Yih Hsu & Yong-Song Chen, 2016. "Development of Integrally Molded Bipolar Plates for All-Vanadium Redox Flow Batteries," Energies, MDPI, vol. 9(5), pages 1-10, May.
    8. Duan, Z.N. & Qu, Z.G. & Wang, Q. & Wang, J.J., 2019. "Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance," Applied Energy, Elsevier, vol. 250(C), pages 1632-1640.
    9. Xu, Q. & Zhao, T.S. & Leung, P.K., 2013. "Numerical investigations of flow field designs for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 105(C), pages 47-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guarnieri, Massimo & Trovò, Andrea & D'Anzi, Angelo & Alotto, Piergiorgio, 2018. "Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments," Applied Energy, Elsevier, vol. 230(C), pages 1425-1434.
    2. Duan, Z.N. & Qu, Z.G. & Wang, Q. & Wang, J.J., 2019. "Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance," Applied Energy, Elsevier, vol. 250(C), pages 1632-1640.
    3. Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
    4. Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
    5. Cheng, Ziqiang & Tenny, Kevin M. & Pizzolato, Alberto & Forner-Cuenca, Antoni & Verda, Vittorio & Chiang, Yet-Ming & Brushett, Fikile R. & Behrou, Reza, 2020. "Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods," Applied Energy, Elsevier, vol. 279(C).
    6. Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
    7. Bhattarai, Arjun & Wai, Nyunt & Schweiss, Rüdiger & Whitehead, Adam & Scherer, Günther G. & Ghimire, Purna C. & Lim, Tuti M. & Hng, Huey Hoon, 2019. "Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level," Applied Energy, Elsevier, vol. 236(C), pages 437-443.
    8. Sun, Jie & Zheng, Menglian & Yang, Zhongshu & Yu, Zitao, 2019. "Flow field design pathways from lab-scale toward large-scale flow batteries," Energy, Elsevier, vol. 173(C), pages 637-646.
    9. Longchun Zhong & Fengming Chu, 2023. "A Novel Biomimetic Lung-Shaped Flow Field for All-Vanadium Redox Flow Battery," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    10. Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
    11. Zhang, Kaiyue & Xiong, Jing & Yan, Chuanwei & Tang, Ao, 2020. "In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design," Applied Energy, Elsevier, vol. 272(C).
    12. Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
    13. Xukun Zhang & Fancheng Meng & Linquan Sun & Zhaowu Zhu & Desheng Chen & Lina Wang, 2022. "Influence of Several Phosphate-Containing Additives on the Stability and Electrochemical Behavior of Positive Electrolytes for Vanadium Redox Flow Battery," Energies, MDPI, vol. 15(21), pages 1-14, October.
    14. Pugach, M. & Kondratenko, M. & Briola, S. & Bischi, A., 2018. "Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover," Applied Energy, Elsevier, vol. 226(C), pages 560-569.
    15. Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
    16. Chin-Lung Hsieh & Po-Hong Tsai & Ning-Yih Hsu & Yong-Song Chen, 2019. "Effect of Compression Ratio of Graphite Felts on the Performance of an All-Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(2), pages 1-11, January.
    17. Yin, Cong & Guo, Shaoyun & Fang, Honglin & Liu, Jiayi & Li, Yang & Tang, Hao, 2015. "Numerical and experimental studies of stack shunt current for vanadium redox flow battery," Applied Energy, Elsevier, vol. 151(C), pages 237-248.
    18. Guarnieri, Massimo & Trovò, Andrea & Picano, Francesco, 2020. "Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method," Applied Energy, Elsevier, vol. 262(C).
    19. Ghimire, Purna C. & Bhattarai, Arjun & Schweiss, Rüdiger & Scherer, Günther G. & Wai, Nyunt & Yan, Qingyu, 2018. "A comprehensive study of electrode compression effects in all vanadium redox flow batteries including locally resolved measurements," Applied Energy, Elsevier, vol. 230(C), pages 974-982.
    20. Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6311-:d:1229221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.