IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1675-1685.html
   My bibliography  Save this article

A three-dimensional model for thermal analysis in a vanadium flow battery

Author

Listed:
  • Zheng, Qiong
  • Zhang, Huamin
  • Xing, Feng
  • Ma, Xiangkun
  • Li, Xianfeng
  • Ning, Guiling

Abstract

A three-dimensional model for thermal analysis has been developed to gain a better understanding of thermal behavior in a vanadium flow battery (VFB). The model is based on a comprehensive description of mass, momentum, charge and energy transport and conservation, combining with a global kinetic model for reactions involving all vanadium species. The emphasis in this paper is placed on the heat losses inside a cell. A quasi-static behavior of temperature and the temperature spatial distribution were characterized via the thermal model. The simulations also indicate that the heat generation exhibits a strong dependence on the applied current density. The reaction rate and the over potential rise with an increased applied current density, resulting in the electrochemical reaction heat rises proportionally and the activation heat rises at a parabolic rate. Based on the Ohm’s law, the ohmic heat rises at a parabolic rate when the applied current density increases. As a result, the determining heat source varies when the applied current density changes. While the relative contribution of the three types of heat is dependent on the cell materials and cell geometry, the regularities of heat losses can also be attained via the model. In addition, the electrochemical reaction heat and activation heat have a lack of sensitivity to the porosity and flow rate, whereas an obvious increase of ohmic heat has been observed with the rise of the porosity. A lower porosity or a faster flow shows a better uniformity of temperature distribution in a VFB. Thus, the model proposed in this paper shows good prospect in heat and temperature management for a VFB aiming at eliminating any crisis of internal heat accumulation.

Suggested Citation

  • Zheng, Qiong & Zhang, Huamin & Xing, Feng & Ma, Xiangkun & Li, Xianfeng & Ning, Guiling, 2014. "A three-dimensional model for thermal analysis in a vanadium flow battery," Applied Energy, Elsevier, vol. 113(C), pages 1675-1685.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1675-1685
    DOI: 10.1016/j.apenergy.2013.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300768X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Q. & Zhao, T.S. & Leung, P.K., 2013. "Numerical investigations of flow field designs for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 105(C), pages 47-56.
    2. Flox, Cristina & Skoumal, Marcel & Rubio-Garcia, Javier & Andreu, Teresa & Morante, Juan Ramón, 2013. "Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries," Applied Energy, Elsevier, vol. 109(C), pages 344-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Cong & Guo, Shaoyun & Fang, Honglin & Liu, Jiayi & Li, Yang & Tang, Hao, 2015. "Numerical and experimental studies of stack shunt current for vanadium redox flow battery," Applied Energy, Elsevier, vol. 151(C), pages 237-248.
    2. Liu, Rui & Chen, Jixin & Xun, Jingzhi & Jiao, Kui & Du, Qing, 2014. "Numerical investigation of thermal behaviors in lithium-ion battery stack discharge," Applied Energy, Elsevier, vol. 132(C), pages 288-297.
    3. Wei, Zhongbao & Zhao, Jiyun & Xiong, Binyu, 2014. "Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies," Applied Energy, Elsevier, vol. 135(C), pages 1-10.
    4. Zhang, Kaiyue & Xiong, Jing & Yan, Chuanwei & Tang, Ao, 2020. "In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design," Applied Energy, Elsevier, vol. 272(C).
    5. He, Qijiao & Li, Zheng & Zhao, Dongqi & Yu, Jie & Tan, Peng & Guo, Meiting & Liao, Tianjun & Zhao, Tianshou & Ni, Meng, 2023. "A 3D modelling study on all vanadium redox flow battery at various operating temperatures," Energy, Elsevier, vol. 282(C).
    6. Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
    7. Bhattacharjee, Ankur & Saha, Hiranmay, 2018. "Development of an efficient thermal management system for Vanadium Redox Flow Battery under different charge-discharge conditions," Applied Energy, Elsevier, vol. 230(C), pages 1182-1192.
    8. Wang, Tao & Fu, Jiahui & Zheng, Menglian & Yu, Zitao, 2018. "Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 227(C), pages 613-623.
    9. Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode," Applied Energy, Elsevier, vol. 213(C), pages 293-305.
    10. Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
    11. Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
    12. Shu-Ling Huang & Chi-Ping Li & Chia-Chin Chang & Chen-Chen Tseng & Ming-Wei Wang & Mei-Ling Chen, 2020. "Real-Time Monitoring of the Thermal Effect for the Redox Flow Battery by an Infrared Thermal Imaging Technology," Energies, MDPI, vol. 13(24), pages 1-19, December.
    13. Cheng, Ziqiang & Tenny, Kevin M. & Pizzolato, Alberto & Forner-Cuenca, Antoni & Verda, Vittorio & Chiang, Yet-Ming & Brushett, Fikile R. & Behrou, Reza, 2020. "Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods," Applied Energy, Elsevier, vol. 279(C).
    14. Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
    15. Mohamed, M.R. & Leung, P.K. & Sulaiman, M.H., 2015. "Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system," Applied Energy, Elsevier, vol. 137(C), pages 402-412.
    16. Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Blasi, A. & Briguglio, N. & Di Blasi, O. & Antonucci, V., 2014. "Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery," Applied Energy, Elsevier, vol. 125(C), pages 114-122.
    2. Mohamed, M.R. & Leung, P.K. & Sulaiman, M.H., 2015. "Performance characterization of a vanadium redox flow battery at different operating parameters under a standardized test-bed system," Applied Energy, Elsevier, vol. 137(C), pages 402-412.
    3. Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode," Applied Energy, Elsevier, vol. 213(C), pages 293-305.
    4. Yin, Cong & Guo, Shaoyun & Fang, Honglin & Liu, Jiayi & Li, Yang & Tang, Hao, 2015. "Numerical and experimental studies of stack shunt current for vanadium redox flow battery," Applied Energy, Elsevier, vol. 151(C), pages 237-248.
    5. Wei, Zhongbao & Zhao, Jiyun & Xiong, Binyu, 2014. "Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies," Applied Energy, Elsevier, vol. 135(C), pages 1-10.
    6. Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
    7. Wang, Tao & Fu, Jiahui & Zheng, Menglian & Yu, Zitao, 2018. "Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 227(C), pages 613-623.
    8. Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.
    9. Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
    10. Bhattarai, Arjun & Wai, Nyunt & Schweiss, Rüdiger & Whitehead, Adam & Scherer, Günther G. & Ghimire, Purna C. & Lim, Tuti M. & Hng, Huey Hoon, 2019. "Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level," Applied Energy, Elsevier, vol. 236(C), pages 437-443.
    11. Kim, Dong Kyu & Yoon, Sang Jun & Lee, Jaeho & Kim, Sangwon, 2018. "Parametric study and flow rate optimization of all-vanadium redox flow batteries," Applied Energy, Elsevier, vol. 228(C), pages 891-901.
    12. Sun, Jie & Zheng, Menglian & Yang, Zhongshu & Yu, Zitao, 2019. "Flow field design pathways from lab-scale toward large-scale flow batteries," Energy, Elsevier, vol. 173(C), pages 637-646.
    13. Fengming Chu & Wen Lu & Dailong Zhai & Guozhen Xiao & Guoan Yang, 2022. "Mass transfer behavior in electrode and battery performance analysis of organic flow battery [Control system design for micro-tubular solid oxide fuel cells]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 494-505.
    14. Leung, P. & Martin, T. & Liras, M. & Berenguer, A.M. & Marcilla, R. & Shah, A. & An, L. & Anderson, M.A. & Palma, J., 2017. "Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries," Applied Energy, Elsevier, vol. 197(C), pages 318-326.
    15. Longchun Zhong & Fengming Chu, 2023. "A Novel Biomimetic Lung-Shaped Flow Field for All-Vanadium Redox Flow Battery," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    16. Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
    17. Xu, Q. & Zhao, T.S. & Zhang, C., 2014. "Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 130(C), pages 139-147.
    18. Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
    19. Di Blasi, O. & Briguglio, N. & Busacca, C. & Ferraro, M. & Antonucci, V. & Di Blasi, A., 2015. "Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery," Applied Energy, Elsevier, vol. 147(C), pages 74-81.
    20. Di Blasi, A. & Busaccaa, C. & Di Blasia, O. & Briguglioa, N. & Squadritoa, G. & Antonuccia, V., 2017. "Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application," Applied Energy, Elsevier, vol. 190(C), pages 165-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1675-1685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.