Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.09.021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
- Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode," Applied Energy, Elsevier, vol. 213(C), pages 293-305.
- Lei, Y. & Zhang, B.W. & Zhang, Z.H. & Bai, B.F. & Zhao, T.S., 2018. "An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 215(C), pages 591-601.
- Alotto, Piergiorgio & Guarnieri, Massimo & Moro, Federico, 2014. "Redox flow batteries for the storage of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 325-335.
- Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
- Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
- Chih-Hsun Chang & Han-Wen Chou & Ning-Yih Hsu & Yong-Song Chen, 2016. "Development of Integrally Molded Bipolar Plates for All-Vanadium Redox Flow Batteries," Energies, MDPI, vol. 9(5), pages 1-10, May.
- Cho, Joohyun & Kleit, Andrew N., 2015. "Energy storage systems in energy and ancillary markets: A backwards induction approach," Applied Energy, Elsevier, vol. 147(C), pages 176-183.
- Choi, Chanyong & Kim, Soohyun & Kim, Riyul & Choi, Yunsuk & Kim, Soowhan & Jung, Ho-young & Yang, Jung Hoon & Kim, Hee-Tak, 2017. "A review of vanadium electrolytes for vanadium redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 263-274.
- Di Blasi, O. & Briguglio, N. & Busacca, C. & Ferraro, M. & Antonucci, V. & Di Blasi, A., 2015. "Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery," Applied Energy, Elsevier, vol. 147(C), pages 74-81.
- Pickard, William F. & Shen, Amy Q. & Hansing, Nicholas J., 2009. "Parking the power: Strategies and physical limitations for bulk energy storage in supply-demand matching on a grid whose input power is provided by intermittent sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1934-1945, October.
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Zhu, X.B., 2016. "Performance of a vanadium redox flow battery with a VANADion membrane," Applied Energy, Elsevier, vol. 180(C), pages 353-359.
- Xu, Q. & Zhao, T.S. & Leung, P.K., 2013. "Numerical investigations of flow field designs for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 105(C), pages 47-56.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Trovò, Andrea & Alotto, Piergiorgio & Giomo, Monica & Moro, Federico & Guarnieri, Massimo, 2021. "A validated dynamical model of a kW-class Vanadium Redox Flow Battery," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 66-77.
- Wang, Shaoliang & Xu, Zeyu & Wu, Xiaoliang & Zhao, Huan & Zhao, Jinling & Liu, Jianguo & Yan, Chuanwei & Fan, Xinzhuang, 2020. "Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery," Applied Energy, Elsevier, vol. 271(C).
- Poli, Nicola & Bonaldo, Cinzia & Moretto, Michele & Guarnieri, Massimo, 2024. "Techno-economic assessment of future vanadium flow batteries based on real device/market parameters," Applied Energy, Elsevier, vol. 362(C).
- Cross, Nicholas R. & Rau, Matthew J. & Lvov, Serguei N. & Gorski, Christopher A. & Logan, Bruce E. & Hall, Derek M., 2023. "System efficiency and power assessment of the all-aqueous copper thermally regenerative ammonia battery," Applied Energy, Elsevier, vol. 339(C).
- Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
- Trovò, Andrea & Marini, Giacomo & Sutto, Alessandro & Alotto, Piergiorgio & Giomo, Monica & Moro, Federico & Guarnieri, Massimo, 2019. "Standby thermal model of a vanadium redox flow battery stack with crossover and shunt-current effects," Applied Energy, Elsevier, vol. 240(C), pages 893-906.
- Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
- Guarnieri, Massimo & Trovò, Andrea & Picano, Francesco, 2020. "Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method," Applied Energy, Elsevier, vol. 262(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Duan, Z.N. & Qu, Z.G. & Wang, Q. & Wang, J.J., 2019. "Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance," Applied Energy, Elsevier, vol. 250(C), pages 1632-1640.
- Guarnieri, Massimo & Trovò, Andrea & Picano, Francesco, 2020. "Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method," Applied Energy, Elsevier, vol. 262(C).
- Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
- Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
- Ghimire, Purna C. & Bhattarai, Arjun & Schweiss, Rüdiger & Scherer, Günther G. & Wai, Nyunt & Yan, Qingyu, 2018. "A comprehensive study of electrode compression effects in all vanadium redox flow batteries including locally resolved measurements," Applied Energy, Elsevier, vol. 230(C), pages 974-982.
- Cheng, Ziqiang & Tenny, Kevin M. & Pizzolato, Alberto & Forner-Cuenca, Antoni & Verda, Vittorio & Chiang, Yet-Ming & Brushett, Fikile R. & Behrou, Reza, 2020. "Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods," Applied Energy, Elsevier, vol. 279(C).
- Bhattarai, Arjun & Wai, Nyunt & Schweiss, Rüdiger & Whitehead, Adam & Scherer, Günther G. & Ghimire, Purna C. & Lim, Tuti M. & Hng, Huey Hoon, 2019. "Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level," Applied Energy, Elsevier, vol. 236(C), pages 437-443.
- Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
- Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
- Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
- Wang, Tao & Fu, Jiahui & Zheng, Menglian & Yu, Zitao, 2018. "Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 227(C), pages 613-623.
- Yue, Meng & Lv, Zhiqiang & Zheng, Qiong & Li, Xianfeng & Zhang, Huamin, 2019. "Battery assembly optimization: Tailoring the electrode compression ratio based on the polarization analysis in vanadium flow batteries," Applied Energy, Elsevier, vol. 235(C), pages 495-508.
- Trovò, Andrea & Alotto, Piergiorgio & Giomo, Monica & Moro, Federico & Guarnieri, Massimo, 2021. "A validated dynamical model of a kW-class Vanadium Redox Flow Battery," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 66-77.
- Zhang, Yunong & Liu, Le & Xi, Jingyu & Wu, Zenghua & Qiu, Xinping, 2017. "The benefits and limitations of electrolyte mixing in vanadium flow batteries," Applied Energy, Elsevier, vol. 204(C), pages 373-381.
- Chin-Lung Hsieh & Po-Hong Tsai & Ning-Yih Hsu & Yong-Song Chen, 2019. "Effect of Compression Ratio of Graphite Felts on the Performance of an All-Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(2), pages 1-11, January.
- Chen, Hui & Li, Xiangrong & Gao, Hai & Liu, Jianguo & Yan, Chuanwei & Tang, Ao, 2019. "Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay," Applied Energy, Elsevier, vol. 247(C), pages 13-23.
- Snigdha Saha & Kranthi Kumar Maniam & Shiladitya Paul & Venkata Suresh Patnaikuni, 2023. "Hydrodynamic and Electrochemical Analysis of Compression and Flow Field Designs in Vanadium Redox Flow Batteries," Energies, MDPI, vol. 16(17), pages 1-33, August.
- Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
- Simon, Benedict A. & Gayon-Lombardo, Andrea & Pino-Muñoz, Catalina A. & Wood, Charles E. & Tenny, Kevin M. & Greco, Katharine V. & Cooper, Samuel J. & Forner-Cuenca, Antoni & Brushett, Fikile R. & Kuc, 2022. "Combining electrochemical and imaging analyses to understand the effect of electrode microstructure and electrolyte properties on redox flow batteries," Applied Energy, Elsevier, vol. 306(PB).
More about this item
Keywords
Redox Flow Battery; Vanadium; Experimental flow battery; Industrial size test facility;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1425-1434. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.