IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4767-d412771.html
   My bibliography  Save this article

Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture

Author

Listed:
  • Tugrul Y. Ertugrul

    (Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA)

  • Michael. C. Daugherty

    (Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA)

  • Jacob R. Houser

    (Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA)

  • Douglas S. Aaron

    (Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA)

  • Matthew M. Mench

    (Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA)

Abstract

The impact of convection on electrochemical performance, performance distribution, and local pressure drop is investigated via simple strip cell architecture, a cell with a single straight channel. Various channel depths (0.25, 0.5, 1, 2.5 mm) and flow rates (10–50 mL min −1 cm −2 ) are employed to induce a wide range of electrolyte velocities within the channel and electrode. Computational flow simulation is utilized to assess velocity and pressure distributions; experimentally measured in situ current distribution is quantified for the cell. Although the total current in the cell is directly proportional to electrolyte velocity in the electrode, there is no correlation detected between electrolyte velocity in the channel and the total current. It is found that the maximum achievable current is limited by diffusion mass transport resistance between the liquid electrolyte and the electrode surfaces at the pore level. Low electrolyte velocity induces large current gradients from inlet to outlet; conversely, high electrolyte velocity exhibits relatively uniform current distribution down the channel. Large current gradients are attributed to local concentration depletion in the electrode since the velocity distribution down the channel is uniform. Shallow channel configurations are observed to successfully compromise between convective flow in the electrode and the overall pressure drop.

Suggested Citation

  • Tugrul Y. Ertugrul & Michael. C. Daugherty & Jacob R. Houser & Douglas S. Aaron & Matthew M. Mench, 2020. "Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture," Energies, MDPI, vol. 13(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4767-:d:412771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Choi, Chanyong & Kim, Soohyun & Kim, Riyul & Choi, Yunsuk & Kim, Soowhan & Jung, Ho-young & Yang, Jung Hoon & Kim, Hee-Tak, 2017. "A review of vanadium electrolytes for vanadium redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 263-274.
    2. Wang, Tao & Fu, Jiahui & Zheng, Menglian & Yu, Zitao, 2018. "Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 227(C), pages 613-623.
    3. Kim, Dong Kyu & Yoon, Sang Jun & Lee, Jaeho & Kim, Sangwon, 2018. "Parametric study and flow rate optimization of all-vanadium redox flow batteries," Applied Energy, Elsevier, vol. 228(C), pages 891-901.
    4. Xu, Q. & Zhao, T.S. & Leung, P.K., 2013. "Numerical investigations of flow field designs for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 105(C), pages 47-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Snigdha Saha & Kranthi Kumar Maniam & Shiladitya Paul & Venkata Suresh Patnaikuni, 2023. "Hydrodynamic and Electrochemical Analysis of Compression and Flow Field Designs in Vanadium Redox Flow Batteries," Energies, MDPI, vol. 16(17), pages 1-33, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yongbin & Yu, Lihong & Liu, Le & Xi, Jingyu, 2021. "Tailoring the vanadium/proton ratio of electrolytes to boost efficiency and stability of vanadium flow batteries over a wide temperature range," Applied Energy, Elsevier, vol. 301(C).
    2. Guarnieri, Massimo & Trovò, Andrea & Picano, Francesco, 2020. "Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method," Applied Energy, Elsevier, vol. 262(C).
    3. Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
    4. Sun, Jie & Zheng, Menglian & Yang, Zhongshu & Yu, Zitao, 2019. "Flow field design pathways from lab-scale toward large-scale flow batteries," Energy, Elsevier, vol. 173(C), pages 637-646.
    5. Jefimowski, Włodzimierz & Szeląg, Adam & Steczek, Marcin & Nikitenko, Anatolii, 2020. "Vanadium redox flow battery parameters optimization in a transportation microgrid: A case study," Energy, Elsevier, vol. 195(C).
    6. Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
    7. Guarnieri, Massimo & Trovò, Andrea & D'Anzi, Angelo & Alotto, Piergiorgio, 2018. "Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments," Applied Energy, Elsevier, vol. 230(C), pages 1425-1434.
    8. Jienkulsawad, Prathak & Jirabovornwisut, Tossaporn & Chen, Yong-Song & Arpornwichanop, Amornchai, 2023. "Effect of battery material and operation on dynamic performance of a vanadium redox flow battery under electrolyte imbalance conditions," Energy, Elsevier, vol. 268(C).
    9. Bhattarai, Arjun & Wai, Nyunt & Schweiss, Rüdiger & Whitehead, Adam & Scherer, Günther G. & Ghimire, Purna C. & Lim, Tuti M. & Hng, Huey Hoon, 2019. "Vanadium redox flow battery with slotted porous electrodes and automatic rebalancing demonstrated on a 1 kW system level," Applied Energy, Elsevier, vol. 236(C), pages 437-443.
    10. Kim, Dong Kyu & Yoon, Sang Jun & Lee, Jaeho & Kim, Sangwon, 2018. "Parametric study and flow rate optimization of all-vanadium redox flow batteries," Applied Energy, Elsevier, vol. 228(C), pages 891-901.
    11. Fengming Chu & Wen Lu & Dailong Zhai & Guozhen Xiao & Guoan Yang, 2022. "Mass transfer behavior in electrode and battery performance analysis of organic flow battery [Control system design for micro-tubular solid oxide fuel cells]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 494-505.
    12. Wei, L. & Zeng, L. & Wu, M.C. & Fan, X.Z. & Zhao, T.S., 2019. "Seawater as an alternative to deionized water for electrolyte preparations in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Shouguang Yao & Xiaofei Sun & Min Xiao & Jie Cheng & Yaju Shen, 2019. "Equivalent Circuit Model Construction and Dynamic Flow Optimization Based on Zinc–Nickel Single-Flow Battery," Energies, MDPI, vol. 12(4), pages 1-17, February.
    14. Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
    15. Yoon, Sang Jun & Kim, Sangwon & Kim, Dong Kyu, 2019. "Optimization of local porosity in the electrode as an advanced channel for all-vanadium redox flow battery," Energy, Elsevier, vol. 172(C), pages 26-35.
    16. Gao, Qingchen & Bao, Zhiming & Li, Weizhuo & Gong, Zhichao & Fan, Linhao & Jiao, Kui, 2024. "Performance analysis and gradient-porosity electrode design of vanadium redox flow batteries based on CFD simulations under open-source environment," Energy, Elsevier, vol. 289(C).
    17. Di Blasi, A. & Briguglio, N. & Di Blasi, O. & Antonucci, V., 2014. "Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery," Applied Energy, Elsevier, vol. 125(C), pages 114-122.
    18. Leung, P. & Martin, T. & Liras, M. & Berenguer, A.M. & Marcilla, R. & Shah, A. & An, L. & Anderson, M.A. & Palma, J., 2017. "Cyclohexanedione as the negative electrode reaction for aqueous organic redox flow batteries," Applied Energy, Elsevier, vol. 197(C), pages 318-326.
    19. Longchun Zhong & Fengming Chu, 2023. "A Novel Biomimetic Lung-Shaped Flow Field for All-Vanadium Redox Flow Battery," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    20. Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4767-:d:412771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.