IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261920300441.html
   My bibliography  Save this article

Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method

Author

Listed:
  • Guarnieri, Massimo
  • Trovò, Andrea
  • Picano, Francesco

Abstract

The paper presents a control method of the electrolyte flow factor in kW-class Vanadium Redox Flow Batteries that minimizes transport losses without affecting the battery's electrical performance. This method uses experimental data acquired on a 9 kW/27 kWh test facility at varying operating conditions. The effects of overpotentials on the polarization curves are then modeled as non-linear electrical resistances that vary with the stack current, state of charge and electrolyte flow rates. Our analysis of these variables shows that the optimal performance is found if the flow factor is modulated during operation according to stack current and the battery state, so as to minimize the overall flow-dependent losses. The optimal profiles have been identified as functions of the battery's operating conditions. Based on these results, a dynamic control for the electrolyte flow rates has been implemented at a software level (i.e. without modifying the hardware of the test facility), which is capable of maximizing the round-trip efficiency and exceeds the performance achieved with a constant flow factor strategy, as proposed in previous literature. The implementation of the optimal flow rate control requires a preliminary test campaign to collect performance data, which are then used in the control protocol to manage the battery's operation. This scheme is easily implementable at a software level in other industrial redox flow batteries.

Suggested Citation

  • Guarnieri, Massimo & Trovò, Andrea & Picano, Francesco, 2020. "Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300441
    DOI: 10.1016/j.apenergy.2020.114532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pugach, M. & Kondratenko, M. & Briola, S. & Bischi, A., 2018. "Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover," Applied Energy, Elsevier, vol. 226(C), pages 560-569.
    2. Defever, Fabrice & Imbruno, Michele & Kneller, Richard, 2020. "Trade liberalization, input intermediaries and firm productivity: Evidence from China," Journal of International Economics, Elsevier, vol. 126(C).
    3. Pugach, M. & Vyshinsky, V. & Bischi, A., 2019. "Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode," Applied Energy, Elsevier, vol. 213(C), pages 293-305.
    5. Guarnieri, Massimo & Trovò, Andrea & D'Anzi, Angelo & Alotto, Piergiorgio, 2018. "Developing vanadium redox flow technology on a 9-kW 26-kWh industrial scale test facility: Design review and early experiments," Applied Energy, Elsevier, vol. 230(C), pages 1425-1434.
    6. Spyros Galanis, 2021. "Speculative trade and the value of public information," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 23(1), pages 53-68, February.
    7. Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
    8. Lei, Y. & Zhang, B.W. & Zhang, Z.H. & Bai, B.F. & Zhao, T.S., 2018. "An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 215(C), pages 591-601.
    9. Wei, Zhongbao & Zhao, Jiyun & Xiong, Binyu, 2014. "Dynamic electro-thermal modeling of all-vanadium redox flow battery with forced cooling strategies," Applied Energy, Elsevier, vol. 135(C), pages 1-10.
    10. Choi, Chanyong & Kim, Soohyun & Kim, Riyul & Choi, Yunsuk & Kim, Soowhan & Jung, Ho-young & Yang, Jung Hoon & Kim, Hee-Tak, 2017. "A review of vanadium electrolytes for vanadium redox flow batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 263-274.
    11. Jen-Yu Chen & Chin-Lung Hsieh & Ning-Yih Hsu & Yi-Sin Chou & Yong-Song Chen, 2014. "Determining the Limiting Current Density of Vanadium Redox Flow Batteries," Energies, MDPI, vol. 7(9), pages 1-11, September.
    12. Wang, Tao & Fu, Jiahui & Zheng, Menglian & Yu, Zitao, 2018. "Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 227(C), pages 613-623.
    13. Galanis, S. & Ioannou, C. & Kotronis, S., 2019. "Information Aggregation Under Ambiguity: Theory and Experimental Evidence," Working Papers 20/05, Department of Economics, City University London.
    14. Trovò, Andrea & Marini, Giacomo & Sutto, Alessandro & Alotto, Piergiorgio & Giomo, Monica & Moro, Federico & Guarnieri, Massimo, 2019. "Standby thermal model of a vanadium redox flow battery stack with crossover and shunt-current effects," Applied Energy, Elsevier, vol. 240(C), pages 893-906.
    15. Paul Levine & Joseph Pearlman & Stephen Wright & Bo Yang, 2019. "Information, VARs and DSGE Models," School of Economics Discussion Papers 1619, School of Economics, University of Surrey.
    16. Di Blasi, A. & Briguglio, N. & Di Blasi, O. & Antonucci, V., 2014. "Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery," Applied Energy, Elsevier, vol. 125(C), pages 114-122.
    17. Xu, Q. & Zhao, T.S. & Leung, P.K., 2013. "Numerical investigations of flow field designs for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 105(C), pages 47-56.
    18. Badrinarayanan, Rajagopalan & Tseng, King Jet & Soong, Boon Hee & Wei, Zhongbao, 2017. "Modelling and control of vanadium redox flow battery for profile based charging applications," Energy, Elsevier, vol. 141(C), pages 1479-1488.
    19. Li, Yifeng & Bao, Jie & Skyllas-Kazacos, Maria & Akter, Md Parvez & Zhang, Xinan & Fletcher, John, 2019. "Studies on dynamic responses and impedance of the vanadium redox flow battery," Applied Energy, Elsevier, vol. 237(C), pages 91-102.
    20. Xu, Q. & Zhao, T.S. & Zhang, C., 2014. "Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 130(C), pages 139-147.
    21. Xiao, Wenyang & Tan, Lei, 2019. "Control strategy optimization of electrolyte flow rate for all vanadium redox flow battery with consideration of pump," Renewable Energy, Elsevier, vol. 133(C), pages 1445-1454.
    22. Mamageishvili, A. & Schlegel, J. C., 2019. "Optimal Smart Contracts with Costly Verification," Working Papers 19/13, Department of Economics, City University London.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    2. Shu-Ling Huang & Chi-Ping Li & Chia-Chin Chang & Chen-Chen Tseng & Ming-Wei Wang & Mei-Ling Chen, 2020. "Real-Time Monitoring of the Thermal Effect for the Redox Flow Battery by an Infrared Thermal Imaging Technology," Energies, MDPI, vol. 13(24), pages 1-19, December.
    3. Ouyang, Tiancheng & Zhang, Mingliang & Qin, Peijia & Tan, Xianlin, 2024. "Flow battery energy storage system for microgrid peak shaving based on predictive control algorithm," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changqing & He, Yigang & Peng, Guanghan, 2019. "The stabilization effect of self-delayed flux integral for two-lane lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Torres-Vargas, G. & Fossion, R. & Méndez-Bermúdez, J.A., 2020. "Normal mode analysis of spectra of random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    3. Aldakheel, F. & Ismail, M.S. & Hughes, K.J. & Ingham, D.B. & Ma, L. & Pourkashanian, M. & Cumming, D. & Smith, R., 2020. "Gas permeability, wettability and morphology of gas diffusion layers before and after performing a realistic ex-situ compression test," Renewable Energy, Elsevier, vol. 151(C), pages 1082-1091.
    4. Zhu, Wen-Xing & Zhang, Jing-Yu & Song, Ze-Rui, 2019. "Study on braking process of vehicles at the signalized intersection based on car-following theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1306-1314.
    5. Borjas, George J. & Cassidy, Hugh, 2019. "The wage penalty to undocumented immigration," Labour Economics, Elsevier, vol. 61(C).
    6. Birol, Fatih & Okogu, Bright E., 1997. "Purchasing-Power-Parity (PPP) approach to energy-efficiency measurement: Implications for energy and environmental policy," Energy, Elsevier, vol. 22(1), pages 7-16.
    7. Sen, Parongama, 2020. "Scaling and crossover behaviour in a truncated long range quantum walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Gargiulo, Nicola & Peluso, Antonio & Aprea, Paolo & Marino, Ottavio & Cioffi, Raffaele & Jannelli, Elio & Cimino, Stefano & Lisi, Luciana & Caputo, Domenico, 2019. "Chromium-based MIL-101 metal organic framework as a fully regenerable D4 adsorbent for biogas purification," Renewable Energy, Elsevier, vol. 138(C), pages 230-235.
    9. Vilela, André L.M. & Wang, Chao & Nelson, Kenric P. & Stanley, H. Eugene, 2019. "Majority-vote model for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 762-770.
    10. Dutton, Hilary & Deane, Kelsey L. & Bullen, Pat, 2020. "Opening up: An exploration of youth mentor self-disclosure using laboratory-based direct observation," Children and Youth Services Review, Elsevier, vol. 108(C).
    11. Charness, Gary & List, John A. & Rustichini, Aldo & Samek, Anya & Van De Ven, Jeroen, 2019. "Theory of mind among disadvantaged children: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 174-194.
    12. Wu, Jing Cynthia & Zhang, Ji, 2019. "A shadow rate New Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    13. Murray, Jean P. & Steinfeld, Aldo & Fletcher, Edward A., 1995. "Metals, nitrides, and carbides via solar carbothermal reduction of metal oxides," Energy, Elsevier, vol. 20(7), pages 695-704.
    14. Li, Zhiyu & Xu, Xiwei & Jiang, Enchen & Han, Ping & Sun, Yan & Zhou, Ling & Zhong, Peidong & Fan, Xudong, 2020. "Alkane from hydrodeoxygenation (HDO) combined with in-situ multistage condensation of biomass continuous pyrolysis bio-oil via mixed supports catalyst Ni/HZSM-5-γ-Al2O3," Renewable Energy, Elsevier, vol. 149(C), pages 535-548.
    15. Bistline, John & Santen, Nidhi & Young, David, 2019. "The economic geography of variable renewable energy and impacts of trade formulations for renewable mandates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 79-96.
    16. Mershon, Carol, 2020. "What effect do local political elites have on infant and child death? Elected and chiefly authority in South Africa," Social Science & Medicine, Elsevier, vol. 251(C).
    17. Salo, Sonja & Jokisalo, Juha & Syri, Sanna & Kosonen, Risto, 2019. "Individual temperature control on demand response in a district heated office building in Finland," Energy, Elsevier, vol. 180(C), pages 946-954.
    18. Chen, Jun & Dong, Wang & Tong, Yixing & Zhang, Feida, 2020. "Corporate philanthropy and corporate misconduct: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 17-31.
    19. Kadum, Hawwa & Cal, Raúl Bayoán & Quigley, Mike & Cortina, Gerard & Calaf, Marc, 2020. "Compounded energy gains in collocated wind plants: Energy balance quantification and wake morphology description," Renewable Energy, Elsevier, vol. 150(C), pages 868-877.
    20. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.