A coupled three dimensional model of vanadium redox flow battery for flow field designs
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2014.07.066
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Xiongwen & Tan, Siew-Chong & Li, Guojun & Li, Jun & Feng, Zhenping, 2013. "Components sizing of hybrid energy systems via the optimization of power dispatch simulations," Energy, Elsevier, vol. 52(C), pages 165-172.
- Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
- Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
- Arun, P. & Banerjee, Rangan & Bandyopadhyay, Santanu, 2008. "Optimum sizing of battery-integrated diesel generator for remote electrification through design-space approach," Energy, Elsevier, vol. 33(7), pages 1155-1168.
- Virulkar, Vasudeo & Aware, Mohan & Kolhe, Mohan, 2011. "Integrated battery controller for distributed energy system," Energy, Elsevier, vol. 36(5), pages 2392-2398.
- Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
- Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
- Tan, Chee Wei & Green, Tim C. & Hernandez-Aramburo, Carlos A., 2010. "A stochastic method for battery sizing with uninterruptible-power and demand shift capabilities in PV (photovoltaic) systems," Energy, Elsevier, vol. 35(12), pages 5082-5092.
- Xu, Q. & Zhao, T.S. & Leung, P.K., 2013. "Numerical investigations of flow field designs for vanadium redox flow batteries," Applied Energy, Elsevier, vol. 105(C), pages 47-56.
- Vynnycky, M., 2011. "Analysis of a model for the operation of a vanadium redox battery," Energy, Elsevier, vol. 36(4), pages 2242-2256.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yin, Cong & Guo, Shaoyun & Fang, Honglin & Liu, Jiayi & Li, Yang & Tang, Hao, 2015. "Numerical and experimental studies of stack shunt current for vanadium redox flow battery," Applied Energy, Elsevier, vol. 151(C), pages 237-248.
- Messaggi, M. & Canzi, P. & Mereu, R. & Baricci, A. & Inzoli, F. & Casalegno, A. & Zago, M., 2018. "Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation," Applied Energy, Elsevier, vol. 228(C), pages 1057-1070.
- Muqing Ding & Tao Liu & Yimin Zhang & Hong Liu & Dong Pan & Liming Chen, 2021. "Physicochemical and Electrochemical Characterization of Vanadium Electrolyte Prepared with Different Grades of V 2 O 5 Raw Materials," Energies, MDPI, vol. 14(18), pages 1-15, September.
- Yoon, Sang Jun & Kim, Sangwon & Kim, Dong Kyu, 2019. "Optimization of local porosity in the electrode as an advanced channel for all-vanadium redox flow battery," Energy, Elsevier, vol. 172(C), pages 26-35.
- Wan, Shuaibin & Liang, Xiongwei & Jiang, Haoran & Sun, Jing & Djilali, Ned & Zhao, Tianshou, 2021. "A coupled machine learning and genetic algorithm approach to the design of porous electrodes for redox flow batteries," Applied Energy, Elsevier, vol. 298(C).
- Pan, Jianxin & Huang, Mianyan & Li, Xue & Wang, Shubo & Li, Weihua & Ma, Tao & Xie, Xiaofeng & Ramani, Vijay, 2016. "The performance of all vanadium redox flow batteries at below-ambient temperatures," Energy, Elsevier, vol. 107(C), pages 784-790.
- Li, Li & Zheng, Keqing & Ni, Meng & Leung, Michael K.H. & Xuan, Jin, 2015. "Partial modification of flow-through porous electrodes in microfluidic fuel cell," Energy, Elsevier, vol. 88(C), pages 563-571.
- Zeng, Yikai & Li, Fenghao & Lu, Fei & Zhou, Xuelong & Yuan, Yanping & Cao, Xiaoling & Xiang, Bo, 2019. "A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries," Applied Energy, Elsevier, vol. 238(C), pages 435-441.
- Sun, Hong & Yu, Mingfu & Li, Qiang & Zhuang, Kaiming & Li, Jie & Almheiri, Saif & Zhang, Xiaochen, 2019. "Characteristics of charge/discharge and alternating current impedance in all-vanadium redox flow batteries," Energy, Elsevier, vol. 168(C), pages 693-701.
- Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
- Snigdha Saha & Kranthi Kumar Maniam & Shiladitya Paul & Venkata Suresh Patnaikuni, 2023. "Hydrodynamic and Electrochemical Analysis of Compression and Flow Field Designs in Vanadium Redox Flow Batteries," Energies, MDPI, vol. 16(17), pages 1-33, August.
- Sun, Jie & Zheng, Menglian & Yang, Zhongshu & Yu, Zitao, 2019. "Flow field design pathways from lab-scale toward large-scale flow batteries," Energy, Elsevier, vol. 173(C), pages 637-646.
- Li, Li & Nikiforidis, Georgios & Leung, Michael K.H. & Daoud, Walid A., 2016. "Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: Model, simulations and experiments," Applied Energy, Elsevier, vol. 177(C), pages 729-739.
- Cheng, Ziqiang & Tenny, Kevin M. & Pizzolato, Alberto & Forner-Cuenca, Antoni & Verda, Vittorio & Chiang, Yet-Ming & Brushett, Fikile R. & Behrou, Reza, 2020. "Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods," Applied Energy, Elsevier, vol. 279(C).
- Duan, Z.N. & Qu, Z.G. & Wang, Q. & Wang, J.J., 2019. "Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance," Applied Energy, Elsevier, vol. 250(C), pages 1632-1640.
- Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
- Kim, Jungmyung & Park, Heesung, 2018. "Impact of nanofluidic electrolyte on the energy storage capacity in vanadium redox flow battery," Energy, Elsevier, vol. 160(C), pages 192-199.
- Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
- Kim, Jungmyung & Park, Heesung, 2019. "Electrokinetic parameters of a vanadium redox flow battery with varying temperature and electrolyte flow rate," Renewable Energy, Elsevier, vol. 138(C), pages 284-291.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Al-Yasiri, Mohammed & Park, Jonghyun, 2018. "A novel cell design of vanadium redox flow batteries for enhancing energy and power performance," Applied Energy, Elsevier, vol. 222(C), pages 530-539.
- Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
- Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
- Zheng, Qiong & Li, Xianfeng & Cheng, Yuanhui & Ning, Guiling & Xing, Feng & Zhang, Huamin, 2014. "Development and perspective in vanadium flow battery modeling," Applied Energy, Elsevier, vol. 132(C), pages 254-266.
- Tareen, Wajahat Ullah & Mekhilef, Saad, 2016. "Transformer-less 3P3W SAPF (three-phase three-wire shunt active power filter) with line-interactive UPS (uninterruptible power supply) and battery energy storage stage," Energy, Elsevier, vol. 109(C), pages 525-536.
- Wang, Q. & Qu, Z.G. & Jiang, Z.Y. & Yang, W.W., 2018. "Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field," Applied Energy, Elsevier, vol. 220(C), pages 106-116.
- Kim, Jonghoon & Cho, B.H., 2013. "Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation," Energy, Elsevier, vol. 57(C), pages 581-599.
- Pan, Jianxin & Huang, Mianyan & Li, Xue & Wang, Shubo & Li, Weihua & Ma, Tao & Xie, Xiaofeng & Ramani, Vijay, 2016. "The performance of all vanadium redox flow batteries at below-ambient temperatures," Energy, Elsevier, vol. 107(C), pages 784-790.
- Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
- Xu, Q. & Zhao, T.S. & Zhang, C., 2014. "Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries," Applied Energy, Elsevier, vol. 130(C), pages 139-147.
- Pugach, M. & Kondratenko, M. & Briola, S. & Bischi, A., 2018. "Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover," Applied Energy, Elsevier, vol. 226(C), pages 560-569.
- Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
- Sukumar, Shivashankar & Mokhlis, Hazlie & Mekhilef, Saad & Naidu, Kanendra & Karimi, Mazaher, 2017. "Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid," Energy, Elsevier, vol. 118(C), pages 1322-1333.
- Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & López-Rey, África, 2018. "Technical approach for the inclusion of superconducting magnetic energy storage in a smart city," Energy, Elsevier, vol. 158(C), pages 1080-1091.
- Yang, Xiao-Guang & Ye, Qiang & Cheng, Ping & Zhao, Tim S., 2015. "Effects of the electric field on ion crossover in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 145(C), pages 306-319.
- Farhadi Kangarlu, Mohammad & Alizadeh Pahlavani, Mohammad Reza, 2014. "Cascaded multilevel converter based superconducting magnetic energy storage system for frequency control," Energy, Elsevier, vol. 70(C), pages 504-513.
- Li, Jianwei & Yang, Qingqing & Robinson, Francis. & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system," Energy, Elsevier, vol. 118(C), pages 1110-1122.
- Yin, Cong & Guo, Shaoyun & Fang, Honglin & Liu, Jiayi & Li, Yang & Tang, Hao, 2015. "Numerical and experimental studies of stack shunt current for vanadium redox flow battery," Applied Energy, Elsevier, vol. 151(C), pages 237-248.
- Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
- Virulkar, Vasudeo & Aware, Mohan & Kolhe, Mohan, 2011. "Integrated battery controller for distributed energy system," Energy, Elsevier, vol. 36(5), pages 2392-2398.
More about this item
Keywords
Vanadium redox flow battery; Three-dimensional modeling; Flow channel design; Cell stack;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:886-895. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.