IDEAS home Printed from https://ideas.repec.org/p/zbw/zewdip/15043.html
   My bibliography  Save this paper

Generalised partially linear regression with misclassified data and an application to labour market transitions

Author

Listed:
  • Dlugosz, Stephan
  • Mammen, Enno
  • Wilke, Ralf A.

Abstract

We consider the semiparametric generalised linear regression model which has mainstream empirical models such as the (partially) linear mean regression, logistic and multinomial regression as special cases. As an extension to related literature we allow a misclassified covariate to be interacted with a nonparametric function of a continuous covariate. This model is tailormade to address known data quality issues of administrative labour market data. Using a sample of 20m observations from Germany we estimate the determinants of labour market transitions and illustrate the role of considerable misclassification in the educational status on estimated transition probabilities and marginal effects.

Suggested Citation

  • Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2015. "Generalised partially linear regression with misclassified data and an application to labour market transitions," ZEW Discussion Papers 15-043, ZEW - Leibniz Centre for European Economic Research.
  • Handle: RePEc:zbw:zewdip:15043
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/112759/1/832553174.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hernandez, Monica & Pudney, Stephen, 2007. "Measurement error in models of welfare participation," Journal of Public Economics, Elsevier, vol. 91(1-2), pages 327-341, February.
    2. Bergemann, Annette & Mertens, Antje, 2000. "Job stability trends, layoffs and quits: An empirical analysis for West Germany," SFB 373 Discussion Papers 2001,102, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Nina Westerheide & Goran Kauermann, 2014. "Unemployed in Germany: Factors Influencing the Risk of Losing the Job," Research in World Economy, Research in World Economy, Sciedu Press, vol. 5(2), pages 43-55, September.
    4. Manfred Antoni & Stefan Seth, 2012. "ALWA-ADIAB – Linked Individual Survey and Administrative Data for Substantive and Methodological Research," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 132(1), pages 141-146.
    5. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    6. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    7. Thierry Magnac & Michael Visser, 1999. "Transition Models With Measurement Errors," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 466-474, August.
    8. Boockmann, Bernhard & Steffes, Susanne, 2005. "Individual and Plant-level Determinants of Job Durations in Germany," ZEW Discussion Papers 05-89, ZEW - Leibniz Centre for European Economic Research.
    9. Manuel Arellano & Costas Meghir, 1992. "Female Labour Supply and On-the-Job Search: An Empirical Model Estimated Using Complementary Data Sets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 59(3), pages 537-559.
    10. Martin Ladouceur & Elham Rahme & Christian A. Pineau & Lawrence Joseph, 2007. "Robustness of Prevalence Estimates Derived from Misclassified Data from Administrative Databases," Biometrics, The International Biometric Society, vol. 63(1), pages 272-279, March.
    11. Maddala, G S, 1971. "The Likelihood Approach to Pooling Cross-Section and Time-Series Data," Econometrica, Econometric Society, vol. 39(6), pages 939-953, November.
    12. Xiaohong Chen & Han Hong & Elie Tamer, 2005. "Measurement Error Models with Auxiliary Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(2), pages 343-366.
    13. Chen, Xiaohong & Hu, Yingyao & Lewbel, Arthur, 2008. "Nonparametric identification of regression models containing a misclassified dichotomous regressor without instruments," Economics Letters, Elsevier, vol. 100(3), pages 381-384, September.
    14. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, January.
    15. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Overview and Applications," Sociological Methods & Research, , vol. 46(3), pages 303-341, August.
    16. repec:iab:iabfme:201112(en is not listed on IDEAS
    17. Laura Wichert & Ralf A. Wilke, 2012. "Which factors safeguard employment?: an analysis with misclassified German register data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(1), pages 135-151, January.
    18. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    19. Kruppe, Thomas & Matthes, Britta & Unger, Stefanie, 2014. "Effectiveness of data correction rules in process-produced data : the case of educational attainment," IAB-Discussion Paper 201415, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    20. Grace Y. Yi & Yanyuan Ma & Donna Spiegelman & Raymond J. Carroll, 2015. "Functional and Structural Methods With Mixed Measurement Error and Misclassification in Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 681-696, June.
    21. Dlugosz, Stephan, 2011. "Give missings a chance: Combined stochastic and rule-based approach to improve regression models with mismeasured monotonic covariates without side information," ZEW Discussion Papers 11-013, ZEW - Leibniz Centre for European Economic Research.
    22. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, January.
    23. Per Johansson & Per Skedinger, 2009. "Misreporting in register data on disability status: evidence from the Swedish Public Employment Service," Empirical Economics, Springer, vol. 37(2), pages 411-434, October.
    24. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2015. "Generalised partially linear regression with misclassified data and an application to labour market transitions," ZEW Discussion Papers 15-043, ZEW - Leibniz Centre for European Economic Research.
    2. repec:iab:iabfme:201510(en is not listed on IDEAS
    3. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    4. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    5. Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    6. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
    7. Mark J. Meyer & Haobo Cheng & Katherine Hobbs Knutson, 2023. "Bayesian Analysis of Multivariate Matched Proportions with Sparse Response," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 490-509, July.
    8. Giancarlo Aquila & Lucas Barros Scianni Morais & Victor Augusto Durães de Faria & José Wanderley Marangon Lima & Luana Medeiros Marangon Lima & Anderson Rodrigo de Queiroz, 2023. "An Overview of Short-Term Load Forecasting for Electricity Systems Operational Planning: Machine Learning Methods and the Brazilian Experience," Energies, MDPI, vol. 16(21), pages 1-35, November.
    9. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    10. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
    11. Zanin, Luca, 2023. "A flexible estimation of sectoral portfolio exposure to climate transition risks in the European stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    12. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    13. Zhongqi Liang & Qihua Wang, 2023. "A robust model averaging approach for partially linear models with responses missing at random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1933-1952, December.
    14. Qi Qian & Danh V. Nguyen & Esra Kürüm & Connie M. Rhee & Sudipto Banerjee & Yihao Li & Damla Şentürk, 2024. "Multivariate Varying Coefficient Spatiotemporal Model," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 761-786, December.
    15. Yu Liu & Chin-Shang Li, 2023. "A linear spline Cox cure model with its applications," Computational Statistics, Springer, vol. 38(2), pages 935-954, June.
    16. Sun, Shilin & Li, Qi & Hu, Wenyang & Liang, Zhongchao & Wang, Tianyang & Chu, Fulei, 2023. "Wind turbine blade breakage detection based on environment-adapted contrastive learning," Renewable Energy, Elsevier, vol. 219(P2).
    17. Elizabeth Goult & Laura Andrea Barrero Guevara & Michael Briga & Matthieu Domenech de Cellès, 2024. "Estimating the optimal age for infant measles vaccination," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
    19. Bravo, Francesco, 2015. "Semiparametric estimation with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 329-346.
    20. Waleed B. Altukhaes & Mahdi Roozbeh & Nur A. Mohamed, 2024. "Robust Liu Estimator Used to Combat Some Challenges in Partially Linear Regression Model by Improving LTS Algorithm Using Semidefinite Programming," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    21. Benjamin Owusu & Bettina Bökemeier & Alfred Greiner, 2023. "Assessing nonlinearities and heterogeneity in debt sustainability analysis: a panel spline approach," Empirical Economics, Springer, vol. 64(3), pages 1315-1346, March.

    More about this item

    Keywords

    semiparametric regression; measurement error; side information;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:15043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.