IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v202y2025ics0167947324001270.html
   My bibliography  Save this article

Spline regression with automatic knot selection

Author

Listed:
  • Goepp, Vivien
  • Bouaziz, Olivier
  • Nuel, Grégory

Abstract

Spline regression has proven to be a useful tool for nonparametric regression. The flexibility of this function family is based on basepoints defining shifts in the behavior of the function – called knots. The question of setting the adequate number of knots and their placement is usually overcome by penalizing over the spline's overall smoothness (e.g. P-splines). However, there are areas of application where finding the best knot placement is of interest. A new method is introduced for automatically selecting knots in spline regression. The approach consists in setting many initial knots and fitting the spline regression through a penalized likelihood procedure called adaptive ridge, which discards the least relevant knots. The method – called A-splines, for adaptive splines – compares favorably with other knot selection methods: it runs way faster (∼10 to ∼400 faster) than comparable methods and has close to equal predictive performance. A-splines are applied to both simulated and real datasets.

Suggested Citation

  • Goepp, Vivien & Bouaziz, Olivier & Nuel, Grégory, 2025. "Spline regression with automatic knot selection," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:csdana:v:202:y:2025:i:c:s0167947324001270
    DOI: 10.1016/j.csda.2024.108043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001270
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:202:y:2025:i:c:s0167947324001270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.