IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/11-03.html
   My bibliography  Save this paper

Semiparametric regression analysis with missing response at random

Author

Listed:
  • Wolfgang Härdle
  • Oliver Linton
  • Wang
  • Qihua

Abstract

We develop inference tools in a semiparametric partially linear regression model with missing response data. A class of estimators is defined that includes as special cases: a semiparametric regression imputation estimator, a marginal average estimator and a (marginal) propensity score weighted estimator. We show that any of our class of estimators is asymptotically normal.The three special estimators have the same asymptotic variance. They achieve the semiparametric efficiency bound in the homoskedastic Gaussian case. We show that the Jackknife method can be used to consistently estimate the asymptotic variance. Our model and estimators are defined with a view to avoid the curse of dimensionality, that severely limits the applicability of existing methods. The empirical likelihood method is developed. It is shownthat when missing responses are imputed using the semiparametric regression method the empirical log-likelihood is asymptotically a scaled chi-square variable. An adjusted empirical log-likelihood ratio, which is asymptoticallystandard chi-square, is obtained. Also, a bootstrap empirical log-likelihood ratio is derived and its distribution is used to approximate that of the imputed empirical log-likelihood ratio. A simulation study is conducted to compare the adjusted and bootstrap empirical likelihood with the normal approximationbased method in terms of coverage accuracies and average lengths of confidence intervals. Based on biases and standard errors, a comparison is alsomade by simulation between the proposed estimators and the related estimators.

Suggested Citation

  • Wolfgang Härdle & Oliver Linton & Wang & Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers 11/03, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:11/03
    DOI: 10.1920/wp.cem.2003.1103
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP1103.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2003.1103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
    2. Qihua Wang, 2002. "Empirical likelihood-based inference in linear errors-in-covariables models with validation data," Biometrika, Biometrika Trust, vol. 89(2), pages 345-358, June.
    3. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    4. Ahn, Hyungtaik & Powell, James L., 1993. "Semiparametric estimation of censored selection models with a nonparametric selection mechanism," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 3-29, July.
    5. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    6. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
    7. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    8. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    9. Qihua Wang & J. N. K. Rao, 2002. "Empirical Likelihood‐based Inference in Linear Models with Missing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 563-576, September.
    10. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Mengmeng & Zhou, Lhan & Huang, Jianhua Z. & Härdle, Wolfgang Karl, 2013. "Functional data analysis of generalized quantile regressions," SFB 649 Discussion Papers 2013-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    3. Yu Liu & Chin-Shang Li, 2023. "A linear spline Cox cure model with its applications," Computational Statistics, Springer, vol. 38(2), pages 935-954, June.
    4. Caldeira, João F. & Santos, André A.P. & Torrent, Hudson S., 2023. "Semiparametric portfolios: Improving portfolio performance by exploiting non-linearities in firm characteristics," Economic Modelling, Elsevier, vol. 122(C).
    5. Hamdy F. F. Mahmoud & Inyoung Kim, 2023. "Semiparametric Integrated and Additive Spatio-Temporal Single-Index Models," Mathematics, MDPI, vol. 11(22), pages 1-15, November.
    6. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
    7. Lu, Steven Qiang & Singh, Sonika & de Roos, Nicolas, 2023. "Effects of online and offline advertising and their synergy on direct telephone sales," Journal of Retailing, Elsevier, vol. 99(3), pages 337-352.
    8. Maximilian Osterhaus, 2024. "A Sparse Grid Approach for the Nonparametric Estimation of High-Dimensional Random Coefficient Models," Papers 2408.07185, arXiv.org.
    9. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    10. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    11. Mark J. Meyer & Haobo Cheng & Katherine Hobbs Knutson, 2023. "Bayesian Analysis of Multivariate Matched Proportions with Sparse Response," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 490-509, July.
    12. Sun, Shilin & Li, Qi & Hu, Wenyang & Liang, Zhongchao & Wang, Tianyang & Chu, Fulei, 2023. "Wind turbine blade breakage detection based on environment-adapted contrastive learning," Renewable Energy, Elsevier, vol. 219(P2).
    13. Benjamin Owusu & Bettina Bökemeier & Alfred Greiner, 2023. "Assessing nonlinearities and heterogeneity in debt sustainability analysis: a panel spline approach," Empirical Economics, Springer, vol. 64(3), pages 1315-1346, March.
    14. Zanin, Luca, 2023. "A flexible estimation of sectoral portfolio exposure to climate transition risks in the European stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    15. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
    16. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    17. Giancarlo Aquila & Lucas Barros Scianni Morais & Victor Augusto Durães de Faria & José Wanderley Marangon Lima & Luana Medeiros Marangon Lima & Anderson Rodrigo de Queiroz, 2023. "An Overview of Short-Term Load Forecasting for Electricity Systems Operational Planning: Machine Learning Methods and the Brazilian Experience," Energies, MDPI, vol. 16(21), pages 1-35, November.
    18. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    19. Waleed B. Altukhaes & Mahdi Roozbeh & Nur A. Mohamed, 2024. "Robust Liu Estimator Used to Combat Some Challenges in Partially Linear Regression Model by Improving LTS Algorithm Using Semidefinite Programming," Mathematics, MDPI, vol. 12(17), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qihua & Härdle, Wolfgang & Linton, Oliver, 2002. "Semiparametric regression analysis under imputation for missing response data," SFB 373 Discussion Papers 2002,6, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    3. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    4. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    5. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    6. James J. Heckman & Petra E. Todd, 2009. "A note on adapting propensity score matching and selection models to choice based samples," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 230-234, January.
    7. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    8. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    9. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    10. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    11. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    12. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    13. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    14. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
    15. Ai, Chunrong & Linton, Oliver & Zhang, Zheng, 2022. "Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models," Journal of Econometrics, Elsevier, vol. 228(1), pages 39-61.
    16. Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Aug 2024.
    17. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    18. repec:hum:wpaper:sfb649dp2014-043 is not listed on IDEAS
    19. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    20. Heckman, James J., 2010. "The Assumptions Underlying Evaluation Estimators," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    21. Biao Zhang, 2016. "Empirical Likelihood in Causal Inference," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 201-231, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:11/03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.