IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v110y2015i510p681-696.html
   My bibliography  Save this article

Functional and Structural Methods With Mixed Measurement Error and Misclassification in Covariates

Author

Listed:
  • Grace Y. Yi
  • Yanyuan Ma
  • Donna Spiegelman
  • Raymond J. Carroll

Abstract

Covariate measurement imprecision or errors arise frequently in many areas. It is well known that ignoring such errors can substantially degrade the quality of inference or even yield erroneous results. Although in practice both covariates subject to measurement error and covariates subject to misclassification can occur, research attention in the literature has mainly focused on addressing either one of these problems separately. To fill this gap, we develop estimation and inference methods that accommodate both characteristics simultaneously. Specifically, we consider measurement error and misclassification in generalized linear models under the scenario that an external validation study is available, and systematically develop a number of effective functional and structural methods. Our methods can be applied to different situations to meet various objectives.

Suggested Citation

  • Grace Y. Yi & Yanyuan Ma & Donna Spiegelman & Raymond J. Carroll, 2015. "Functional and Structural Methods With Mixed Measurement Error and Misclassification in Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 681-696, June.
  • Handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:681-696
    DOI: 10.1080/01621459.2014.922777
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.922777
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.922777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    2. Ma, Yanyuan & Ronchetti, Elvezio, 2011. "Saddlepoint Test in Measurement Error Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 147-156.
    3. Grace Y. Yi & Yanyuan Ma & Raymond J. Carroll, 2012. "A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error," Biometrika, Biometrika Trust, vol. 99(1), pages 151-165.
    4. Peter Hall & Yanyuan Ma, 2007. "Semiparametric estimators of functional measurement error models with unknown error," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 429-446, June.
    5. Anastasios A. Tsiatis & Yanyuan Ma, 2004. "Locally efficient semiparametric estimators for functional measurement error models," Biometrika, Biometrika Trust, vol. 91(4), pages 835-848, December.
    6. David M. Zucker & Donna Spiegelman, 2004. "Inference for the Proportional Hazards Model with Misclassified Discrete-Valued Covariates," Biometrics, The International Biometric Society, vol. 60(2), pages 324-334, June.
    7. Carriquiry, Alicia L. & Fuller, Wayne A., 1996. "A Semiparametric Approach to Estimating Usual Intake Distributions," Staff General Research Papers Archive 1036, Iowa State University, Department of Economics.
    8. John P. Buonaccorsi & Petter Laake & Marit B. Veierød, 2005. "On the Effect of Misclassification on Bias of Perfectly Measured Covariates in Regression," Biometrics, The International Biometric Society, vol. 61(3), pages 831-836, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei Geng & Hira L. Koul, 2019. "Minimum distance model checking in Berkson measurement error models with validation data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 879-899, September.
    2. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    3. Qihuang Zhang & Grace Y. Yi, 2023. "Zero‐inflated Poisson models with measurement error in the response," Biometrics, The International Biometric Society, vol. 79(2), pages 1089-1102, June.
    4. Li‐Pang Chen & Grace Y. Yi, 2021. "Analysis of noisy survival data with graphical proportional hazards measurement error models," Biometrics, The International Biometric Society, vol. 77(3), pages 956-969, September.
    5. Qianqian Wang & Yanyuan Ma & Guangren Yang, 2020. "Locally efficient estimation in generalized partially linear model with measurement error in nonlinear function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 553-572, June.
    6. Liqun Diao & Grace Y. Yi, 2023. "Classification Trees with Mismeasured Responses," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 168-191, April.
    7. Li-Pang Chen & Grace Y. Yi, 2021. "Semiparametric methods for left-truncated and right-censored survival data with covariate measurement error," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 481-517, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Zhang & Zhenghui Feng & Peirong Xu & Hua Liang, 2017. "Generalized varying coefficient partially linear measurement errors models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 97-120, February.
    2. Yanyuan Ma & Jeffrey D. Hart & Ryan Janicki & Raymond J. Carroll, 2011. "Local and omnibus goodness‐of‐fit tests in classical measurement error models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 81-98, January.
    3. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    4. Garcia, Tanya P. & Ma, Yanyuan, 2017. "Simultaneous treatment of unspecified heteroskedastic model error distribution and mismeasured covariates for restricted moment models," Journal of Econometrics, Elsevier, vol. 200(2), pages 194-206.
    5. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    6. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    7. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    8. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    9. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    10. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    11. B. Praag & T. Dijkstra & J. Velzen, 1985. "Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 25-36, March.
    12. Reischmann, Markus, 2016. "Creative accounting and electoral motives: Evidence from OECD countries," Journal of Comparative Economics, Elsevier, vol. 44(2), pages 243-257.
    13. Czudaj Robert L., 2020. "The role of uncertainty on agricultural futures markets momentum trading and volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-39, June.
    14. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta, 2014. "Revisiting Herding Behavior in REITs: A Regime-Switching Approach," Working Papers 201448, University of Pretoria, Department of Economics.
    15. Topi Miettinen & Sigrid Suetens, 2008. "Communication and Guilt in a Prisoner's Dilemma," Journal of Conflict Resolution, Peace Science Society (International), vol. 52(6), pages 945-960, December.
    16. Towfiqul Islam Khan & Mashfique Ibne Akbar, 2015. "Illicit Financial Flow in view of Financing the Post-2015 Development Agenda," Southern Voice Occasional Paper 25, Southern Voice.
    17. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    18. Potrafke, Niklas, 2019. "Electoral cycles in perceived corruption: International empirical evidence," Journal of Comparative Economics, Elsevier, vol. 47(1), pages 215-224.
    19. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    20. Hendrik Thiel & Stephan L. Thomsen, 2015. "Individual Poverty Paths and the Stability of Control-Perception," SOEPpapers on Multidisciplinary Panel Data Research 794, DIW Berlin, The German Socio-Economic Panel (SOEP).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:510:p:681-696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.