IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v46y2017i3p303-341.html
   My bibliography  Save this article

A Unified Approach to Measurement Error and Missing Data: Overview and Applications

Author

Listed:
  • Matthew Blackwell
  • James Honaker
  • Gary King

Abstract

Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model dependence, difficult computation, or inapplicability with multiple mismeasured variables. We develop an easy-to-use alternative without these problems; it generalizes the popular multiple imputation (MI) framework by treating missing data problems as a limiting special case of extreme measurement error and corrects for both. Like MI , the proposed framework is a simple two-step procedure, so that in the second step researchers can use whatever statistical method they would have if there had been no problem in the first place. We also offer empirical illustrations, open source software that implements all the methods described herein, and a companion article with technical details and extensions.

Suggested Citation

  • Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Overview and Applications," Sociological Methods & Research, , vol. 46(3), pages 303-341, August.
  • Handle: RePEc:sae:somere:v:46:y:2017:i:3:p:303-341
    DOI: 10.1177/0049124115585360
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124115585360
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124115585360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jonathan N. Katz & Gabriel Katz, 2010. "Correcting for Survey Misreports Using Auxiliary Information with an Application to Estimating Turnout," American Journal of Political Science, John Wiley & Sons, vol. 54(3), pages 815-835, July.
    2. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Overview and Applications," Sociological Methods & Research, , vol. 46(3), pages 303-341, August.
    3. Brownstone, David & Valletta, Robert G, 1996. "Modeling Earnings Measurement Error: A Multiple Imputation Approach," University of California Transportation Center, Working Papers qt3gb0k9b5, University of California Transportation Center.
    4. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Details and Extensions," Sociological Methods & Research, , vol. 46(3), pages 342-369, August.
    5. Brownstone, David & Valletta, Robert G, 1996. "Modeling Earnings Measurement Error: A Multiple Imputation Approach," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 705-717, November.
    6. Klepper, Steven & Leamer, Edward E, 1984. "Consistent Sets of Estimates for Regressions with Errors in All Variables," Econometrica, Econometric Society, vol. 52(1), pages 163-183, January.
    7. Kosuke Imai & Teppei Yamamoto, 2010. "Causal Inference with Differential Measurement Error: Nonparametric Identification and Sensitivity Analysis," American Journal of Political Science, John Wiley & Sons, vol. 54(2), pages 543-560, April.
    8. King, Gary & Honaker, James & Joseph, Anne & Scheve, Kenneth, 2001. "Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation," American Political Science Review, Cambridge University Press, vol. 95(1), pages 49-69, March.
    9. Ansolabehere, Stephen & Rodden, Jonathan & Snyder, James M., 2008. "The Strength of Issues: Using Multiple Measures to Gauge Preference Stability, Ideological Constraint, and Issue Voting," American Political Science Review, Cambridge University Press, vol. 102(2), pages 215-232, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolphe Desbordes & Gary Koop, 2014. "The known unknowns of governance," Working Papers 1407, University of Strathclyde Business School, Department of Economics.
    2. Simon Grund & Oliver Lüdtke & Alexander Robitzsch, 2021. "On the Treatment of Missing Data in Background Questionnaires in Educational Large-Scale Assessments: An Evaluation of Different Procedures," Journal of Educational and Behavioral Statistics, , vol. 46(4), pages 430-465, August.
    3. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Details and Extensions," Sociological Methods & Research, , vol. 46(3), pages 342-369, August.
    4. repec:dau:papers:123456789/4924 is not listed on IDEAS
    5. Mittag, Nikolas, 2016. "Correcting for Misreporting of Government Benefits," IZA Discussion Papers 10266, Institute of Labor Economics (IZA).
    6. Keisuke Hirano & Guido W. Imbens & Geert Ridder & Donald B. Rubin, 2001. "Combining Panel Data Sets with Attrition and Refreshment Samples," Econometrica, Econometric Society, vol. 69(6), pages 1645-1659, November.
    7. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    8. Sebastian Barfort & Nikolaj Harmon & Frederik Hjorth & Asmus Leth Olsen, 2015. "Dishonesty and Selection into Public Service in Denmark: Who Runs the World’s Least Corrupt Public Sector?," Discussion Papers 15-12, University of Copenhagen. Department of Economics.
    9. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    10. Fernández-Kranz, Daniel & Lacuesta, Aitor & Rodríguez-Planas, Núria, 2010. "Chutes and Ladders: Dual Tracks and the Motherhood Dip," IZA Discussion Papers 5403, Institute of Labor Economics (IZA).
    11. Martin Schmalz & Jean-François Kagy & Jose Azar, 2014. "Can Changes in the Cost of Cash Resolve the Corporate Cash Puzzle?," 2014 Meeting Papers 1027, Society for Economic Dynamics.
    12. Schrapler, Jorg-Peter, 2003. "Respondent behaviour in panel studies: a case study for income-nonresponse by means of the British Household Panel Study (BHPS)," ISER Working Paper Series 2003-08, Institute for Social and Economic Research.
    13. Donal O'Neill, 2015. "Correcting for Self-Reporting Bias in BMI: A Multiple Imputation Approach," Economics Department Working Paper Series n263-15.pdf, Department of Economics, National University of Ireland - Maynooth.
    14. Ton de Waal & Arnout van Delden & Sander Scholtus, 2020. "Multi‐source Statistics: Basic Situations and Methods," International Statistical Review, International Statistical Institute, vol. 88(1), pages 203-228, April.
    15. Jörg-Peter Schräpler, 2002. "Respondent Behavior in Panel Studies: A Case Study for Income-Nonresponse by Means of the German Socio-Economic Panel (GSOEP)," Discussion Papers of DIW Berlin 299, DIW Berlin, German Institute for Economic Research.
    16. Matheson, Catherine M. & Rimmer, Russell & Tinsley, Ross, 2014. "Spiritual attitudes and visitor motivations at the Beltane Fire Festival, Edinburgh," Tourism Management, Elsevier, vol. 44(C), pages 16-33.
    17. Pina-Sánchez Jose & Koskinen Johan & Plewis Ian, 2019. "Adjusting for Measurement Error in Retrospectively Reported Work Histories: An Analysis Using Swedish Register Data," Journal of Official Statistics, Sciendo, vol. 35(1), pages 203-229, March.
    18. Marsh, L.C.Lawrence C., 2004. "The econometrics of higher education: editor's view," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 1-18.
    19. Joscha Legewie, 2018. "Living on the Edge: Neighborhood Boundaries and the Spatial Dynamics of Violent Crime," Demography, Springer;Population Association of America (PAA), vol. 55(5), pages 1957-1977, October.
    20. Kuwayama, Yusuke & Olmstead, Sheila & Zheng, Jiameng, 2022. "A more comprehensive estimate of the value of water quality," Journal of Public Economics, Elsevier, vol. 207(C).
    21. Bruce D. Meyer & Nikolas Mittag & Derek Wu, 2024. "Race, Ethnicity, and Measurement Error," NBER Chapters, in: Race, Ethnicity, and Economic Statistics for the 21st Century, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:46:y:2017:i:3:p:303-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.