Coking coal futures price index forecasting with the neural network
Author
Abstract
Suggested Citation
DOI: 10.1007/s13563-022-00311-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Jian & Cabrera, Juan & Wang, Tao, 2010. "Nonlinearity, data-snooping, and stock index ETF return predictability," European Journal of Operational Research, Elsevier, vol. 200(2), pages 498-507, January.
- Jian Yang & Michael Haigh & David Leatham, 2001.
"Agricultural liberalization policy and commodity price volatility: a GARCH application,"
Applied Economics Letters, Taylor & Francis Journals, vol. 8(9), pages 593-598.
- Yang, Jian & Leatham, David J. & Haigh, Michael S., 1999. "Agricultural Liberalization Policy and Commodity Price Volatility: A GARCH Application," 1999 Regional Committee NC-221, 1999, Mississauga, Ontario, Canada 132337, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
- Roger A. Fujihara & Mbodja Mougoué, 1997. "An examination of linear and nonlinear causal relationships between price variability and volume in petroleum futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(4), pages 385-416, June.
- Jian Yang & Titus Awokuse, 2003.
"Asset storability and hedging effectiveness in commodity futures markets,"
Applied Economics Letters, Taylor & Francis Journals, vol. 10(8), pages 487-491.
- Yang, Jian & Awokuse, Titus O., 2002. "Asset Storability And Hedging Effectiveness In Commodity Futures Markets," Staff Papers 15826, University of Delaware, Department of Food and Resource Economics.
- Chen, Dean T. & Bessler, David A., 1990.
"Forecasting monthly cotton price: Structural and time series approaches,"
International Journal of Forecasting, Elsevier, vol. 6(1), pages 103-113.
- Chen, Dean T. & Bessler, David A., 1988. "Forecasting Monthly Cotton Price: Structural and Time Series Approaches," Staff Reports 257920, Texas A&M University, Agricultural and Food Policy Center.
- Awokuse, Titus O. & Yang, Jian, 2003.
"The informational role of commodity prices in formulating monetary policy: a reexamination,"
Economics Letters, Elsevier, vol. 79(2), pages 219-224, May.
- Awokuse, Titus O. & Yang, Jian, 2002. "The Informational Role Of Commodity Prices In Formulating Monetary Policy: A Reexamination," Staff Papers 15834, University of Delaware, Department of Food and Resource Economics.
- Dharmaraja Selvamuthu & Vineet Kumar & Abhishek Mishra, 2019. "Indian stock market prediction using artificial neural networks on tick data," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-12, December.
- Wang, Jianzhou & Dong, Yao & Wu, Jie & Mu, Ren & Jiang, He, 2011. "Coal production forecast and low carbon policies in China," Energy Policy, Elsevier, vol. 39(10), pages 5970-5979, October.
- Dergiades, Theologos & Martinopoulos, Georgios & Tsoulfidis, Lefteris, 2013.
"Energy consumption and economic growth: Parametric and non-parametric causality testing for the case of Greece,"
Energy Economics, Elsevier, vol. 36(C), pages 686-697.
- Theologos Dergiades & Georgios Martinopoulos & Lefteris Tsoulfidis, 2011. "Energy Consumption and Economic Growth:Parametric and Non-Parametric Causality Testing for the Case of Greece," Discussion Paper Series 2011_16, Department of Economics, University of Macedonia, revised Nov 2011.
- Dergiades, Theologos & Martinopoulos, Georgios & Tsoulfidis, Lefteris, 2011. "Energy Consumption and Economic Growth: Parametric and Non-Parametric Causality Testing for the Case of Greece," MPRA Paper 51120, University Library of Munich, Germany, revised 12 Nov 2011.
- Fan, Xinghua & Wang, Li & Li, Shasha, 2016. "Predicting chaotic coal prices using a multi-layer perceptron network model," Resources Policy, Elsevier, vol. 50(C), pages 86-92.
- Wang, Tao & Yang, Jian, 2010. "Nonlinearity and intraday efficiency tests on energy futures markets," Energy Economics, Elsevier, vol. 32(2), pages 496-503, March.
- McIntosh, Christopher S. & Bessler, David A., 1988.
"Forecasting Agricultural Prices Using A Bayesian Composite Approach,"
Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 20(2), pages 1-8, December.
- McIntosh, Christopher S. & Bessler, David A., 1988. "Forecasting Agricultural Prices Using a Bayesian Composite Approach," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 20(2), pages 73-80, December.
- Bessler, David A & Babula, Ronald A, 1987. "Forecasting Wheat Exports: Do Exchange Rates Matter?," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(3), pages 397-406, July.
- Xiaojie Xu, 2019. "Contemporaneous Causal Orderings of CSI300 and Futures Prices through Directed Acyclic Graphs," Economics Bulletin, AccessEcon, vol. 39(3), pages 2052-2077.
- Shafiee, Shahriar & Topal, Erkan, 2010. "A long-term view of worldwide fossil fuel prices," Applied Energy, Elsevier, vol. 87(3), pages 988-1000, March.
- Xiaojie Xu, 2015. "Cointegration among regional corn cash prices," Economics Bulletin, AccessEcon, vol. 35(4), pages 2581-2594.
- Bessler, David A., 1982. "Adaptive Expectations, the Exponentially Weighted Forecast, and Optimal Statistical Predictors: A Revisit," Journal of Agricultural Economics Research, United States Department of Agriculture, Economic Research Service, vol. 34(2), pages 1-8, April.
- Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
- Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
- Bessler, David A. & Hopkins, Jane C., 1986. "Forecasting an agricultural system with random walk priors," Agricultural Systems, Elsevier, vol. 21(1), pages 59-67.
- Christoph Wegener & Christian Spreckelsen & Tobias Basse & Hans‐Jörg Mettenheim, 2016. "Forecasting Government Bond Yields with Neural Networks Considering Cointegration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(1), pages 86-92, January.
- Kling, John L. & Bessler, David A., 1985. "A comparison of multivariate forecasting procedures for economic time series," International Journal of Forecasting, Elsevier, vol. 1(1), pages 5-24.
- Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
- Matyjaszek, Marta & Riesgo Fernández, Pedro & Krzemień, Alicja & Wodarski, Krzysztof & Fidalgo Valverde, Gregorio, 2019. "Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory," Resources Policy, Elsevier, vol. 61(C), pages 283-292.
- Yang, Jian & Su, Xiaojing & Kolari, James W., 2008. "Do Euro exchange rates follow a martingale? Some out-of-sample evidence," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 729-740, May.
- Wang, Zijun & Bessler, David A., 2004. "Forecasting performance of multivariate time series models with full and reduced rank: an empirical examination," International Journal of Forecasting, Elsevier, vol. 20(4), pages 683-695.
- Jon A. Brandt & David A. Bessler, 1981. "Composite Forecasting: An Application with U.S. Hog Prices," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 63(1), pages 135-140.
- Jian Yang & David J. Leatham, 1998. "Market efficiency of US grain markets: Application of cointegration tests," Agribusiness, John Wiley & Sons, Ltd., vol. 14(2), pages 107-112.
- Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
- David Bessler & Zijun Wang, 2012. "D-separation, forecasting, and economic science: a conjecture," Theory and Decision, Springer, vol. 73(2), pages 295-314, August.
- Jian Yang & Jin Zhang & David J. Leatham, 2003. "Price and Volatility Transmission in International Wheat Futures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 37-50, May.
- David A Bessler & Jian Yang & Metha Wongcharupan, 2003. "Price Dynamics in the International Wheat Market: Modeling with Error Correction and Directed Acyclic Graphs," Journal of Regional Science, Wiley Blackwell, vol. 43(1), pages 1-33, February.
- David A. Bessler & John L. Kling, 1986. "Forecasting Vector Autoregressions with Bayesian Priors," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(1), pages 144-151.
- Jian Yang & Zheng Li & Tao Wang, 2021. "Price discovery in chinese agricultural futures markets: A comprehensive look," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 536-555, April.
- Qing Zhu & Zhongyu Zhang & Rongyao Li & Kin Keung Lai & Shouyang Wang & Jian Chai, 2014. "Structural Analysis and Total Coal Demand Forecast in China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-10, June.
- Li, Miao & Xiong, Tao, 2021. "Dynamic price discovery in Chinese agricultural futures markets," Journal of Asian Economics, Elsevier, vol. 76(C).
- Babula, Ronald A. & Bessler, David A. & Reeder, John & Somwaru, Agapi, 2004. "Modeling U.S. Soy-Based Markets with Directed Acyclic Graphs and Bernanke Structural VAR Methods: The Impacts of High Soy Meal and Soybean Prices," Journal of Food Distribution Research, Food Distribution Research Society, vol. 35(3), pages 1-24, November.
- repec:bla:rdevec:v:14:y:2010:i:s1:p:499-519 is not listed on IDEAS
- Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
- Lin Chan, Hing & Kam Lee, Shu, 1997. "Modelling and forecasting the demand for coal in China," Energy Economics, Elsevier, vol. 19(3), pages 271-287, July.
- Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
- Bessler, David A. & Brandt, Jon A., 1992. "An analysis of forecasts of livestock prices," Journal of Economic Behavior & Organization, Elsevier, vol. 18(2), pages 249-263, July.
- David A. Bessler, 1990. "Forecasting Multiple Time Series with Little Prior Information," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 72(3), pages 788-792.
- Marta Matyjaszek & Gregorio Fidalgo Valverde & Alicja Krzemień & Krzysztof Wodarski & Pedro Riesgo Fernández, 2020. "Optimizing Predictor Variables in Artificial Neural Networks When Forecasting Raw Material Prices for Energy Production," Energies, MDPI, vol. 13(8), pages 1-15, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiaojie Xu & Yun Zhang, 2022. "Forecasting the total market value of a shares traded in the Shenzhen stock exchange via the neural network," Economics Bulletin, AccessEcon, vol. 42(3), pages 1266-1279.
- Xiaojie Xu & Yun Zhang, 2022. "Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(3), pages 169-181, July.
- Xiaojie Xu & Yun Zhang, 2023. "Neural network predictions of the high-frequency CSI300 first distant futures trading volume," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(2), pages 191-207, June.
- Xiaojie Xu, 2017. "Short-run price forecast performance of individual and composite models for 496 corn cash markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(14), pages 2593-2620, October.
- Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
- Wu, Siping & Xia, Guilin & Liu, Lang, 2023. "A novel decomposition integration model for power coal price forecasting," Resources Policy, Elsevier, vol. 80(C).
- Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
- Xu, Mengjie & Li, Xiang & Li, Qianwen & Sun, Chuanwang, 2024. "LNBi-GRU model for coal price prediction and pattern recognition analysis," Applied Energy, Elsevier, vol. 365(C).
- Xiaojie Xu, 2018. "Cointegration and price discovery in US corn cash and futures markets," Empirical Economics, Springer, vol. 55(4), pages 1889-1923, December.
- Xu Xiaojie, 2018. "Linear and Nonlinear Causality between Corn Cash and Futures Prices," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 16(2), pages 1-16, November.
- Sun, Sizhong & Anwar, Sajid, 2015. "R&D status and the performance of domestic firms in China's coal mining industry," Energy Policy, Elsevier, vol. 79(C), pages 99-103.
- Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
- Wang, Chengjin & Ducruet, César, 2014. "Transport corridors and regional balance in China: the case of coal trade and logistics," Journal of Transport Geography, Elsevier, vol. 40(C), pages 3-16.
- Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021.
"Forecasting energy commodity prices: A large global dataset sparse approach,"
Energy Economics, Elsevier, vol. 98(C).
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2019. "Forecasting energy commodity prices: A large global dataset sparse approach," CAMA Working Papers 2019-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2021. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," BEMPS - Bozen Economics & Management Paper Series BEMPS83, Faculty of Economics and Management at the Free University of Bozen.
- Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2019. "Forecasting energy commodity prices: a large global dataset sparse approach," Working Papers 2019-09, University of Tasmania, Tasmanian School of Business and Economics.
- Davide Ferrari & Francesco Ravazzolo & Joaquin L. Vespignani, 2019. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," Globalization Institute Working Papers 376, Federal Reserve Bank of Dallas.
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Chen, Bin-xia & Sun, Yan-lin, 2022. "The impact of VIX on China’s financial market: A new perspective based on high-dimensional and time-varying methods," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
- Nigatu, Getachew & Adjemian, Michael K., 2016.
"The U.S. Role in the Price Determination of Major Agricultural Commodities,"
2016 Annual Meeting, July 31-August 2, Boston, Massachusetts
236045, Agricultural and Applied Economics Association.
- Nigatu, Getachew & Adjemian, Michael K., 2016. "The U.S. Role in the Price Determination of Major Agricultural Commodities," 2017 Allied Social Sciences Association (ASSA) Annual Meeting, January 6-8, 2017, Chicago, Illinois 250119, Agricultural and Applied Economics Association.
- Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021.
"Forecasting energy commodity prices: A large global dataset sparse approach,"
Energy Economics, Elsevier, vol. 98(C).
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2019. "Forecasting energy commodity prices: A large global dataset sparse approach," CAMA Working Papers 2019-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2019. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," Working Papers No 11/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2021. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," BEMPS - Bozen Economics & Management Paper Series BEMPS83, Faculty of Economics and Management at the Free University of Bozen.
- Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2019. "Forecasting energy commodity prices: a large global dataset sparse approach," Working Papers 2019-09, University of Tasmania, Tasmanian School of Business and Economics.
- Davide Ferrari & Francesco Ravazzolo & Joaquin L. Vespignani, 2019. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," Globalization Institute Working Papers 376, Federal Reserve Bank of Dallas.
- P. Geoffrey Allen & Robert Fildes, 2005.
"Levels, Differences and ECMs – Principles for Improved Econometric Forecasting,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 881-904, December.
- Allen, P. Geoffrey & Fildes, Robert, 2004. "Levels, Differences And Ecms - Principles For Improved Econometric Forecasting," Working Paper Series 14501, University of Massachusetts, Amherst, Department of Resource Economics.
- Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
More about this item
Keywords
Coking coal; Price forecasting; Time series; Neural network; Machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:36:y:2023:i:2:d:10.1007_s13563-022-00311-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.