A novel decomposition integration model for power coal price forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.resourpol.2022.103259
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
- Liu, Ming-Hua & Margaritis, Dimitris & Zhang, Yang, 2013. "Market-driven coal prices and state-administered electricity prices in China," Energy Economics, Elsevier, vol. 40(C), pages 167-175.
- Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
- Matyjaszek, Marta & Riesgo Fernández, Pedro & Krzemień, Alicja & Wodarski, Krzysztof & Fidalgo Valverde, Gregorio, 2019. "Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory," Resources Policy, Elsevier, vol. 61(C), pages 283-292.
- Xiaopeng Guo & Jiaxing Shi & Dongfang Ren, 2016. "Coal Price Forecasting and Structural Analysis in China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-7, October.
- Wen, Shiyan & Jia, Zhijie, 2022. "The energy, environment and economy impact of coal resource tax, renewable investment, and total factor productivity growth," Resources Policy, Elsevier, vol. 77(C).
- Zhao, Zhen-yu & Zhu, Jiang & Xia, Bo, 2016. "Multi-fractal fluctuation features of thermal power coal price in China," Energy, Elsevier, vol. 117(P1), pages 10-18.
- Fan, Xinghua & Wang, Li & Li, Shasha, 2016. "Predicting chaotic coal prices using a multi-layer perceptron network model," Resources Policy, Elsevier, vol. 50(C), pages 86-92.
- Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
- Li, Fengyun & Li, Xingmei & Zheng, Haofeng & Yang, Fei & Dang, Ruinan, 2021. "How alternative energy competition shocks natural gas development in China: A novel time series analysis approach," Resources Policy, Elsevier, vol. 74(C).
- Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
- Herrera, Gabriel Paes & Constantino, Michel & Tabak, Benjamin Miranda & Pistori, Hemerson & Su, Jen-Je & Naranpanawa, Athula, 2019. "Long-term forecast of energy commodities price using machine learning," Energy, Elsevier, vol. 179(C), pages 214-221.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fan, Jingmin & Zhong, Mingwei & Guan, Yuanpeng & Yi, Siqi & Xu, Cancheng & Zhai, Yanpeng & Zhou, Yongwang, 2024. "An online long-term load forecasting method: Hierarchical highway network based on crisscross feature collaboration," Energy, Elsevier, vol. 299(C).
- Liu, Longlong & Zhou, Suyu & Jie, Qian & Du, Pei & Xu, Yan & Wang, Jianzhou, 2024. "A robust time-varying weight combined model for crude oil price forecasting," Energy, Elsevier, vol. 299(C).
- Wang, Delu & Tian, Cuicui & Mao, Jinqi & Chen, Fan, 2023. "Forecasting coal demand in key coal consuming industries based on the data-characteristic-driven decomposition ensemble model," Energy, Elsevier, vol. 282(C).
- Junjie Liu & Lang Liu, 2024. "Point and Interval Forecasting of Coal Price Adopting a Novel Decomposition Integration Model," Energies, MDPI, vol. 17(16), pages 1-17, August.
- Li, Ranran, 2023. "Forecasting energy spot prices: A multiscale clustering recognition approach," Resources Policy, Elsevier, vol. 81(C).
- Sikorska-Pastuszka, Magdalena & Papież, Monika, 2023. "Dynamic volatility connectedness in the European electricity market," Energy Economics, Elsevier, vol. 127(PA).
- Wu, Han & Liang, Yan & Gao, Xiao-Zhi & Du, Pei, 2024. "Auditory-circuit-motivated deep network with application to short-term electricity price forecasting," Energy, Elsevier, vol. 288(C).
- Zhang, Yan & Xu, Yushi & Zhu, Xintong & Huang, Jionghao, 2024. "Coal price shock propagation through sectoral financial interconnectedness in China's stock market: Quantile coherency network modelling and shock decomposition analysis," Journal of Commodity Markets, Elsevier, vol. 34(C).
- Lahmiri, Salim, 2024. "Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study," Resources Policy, Elsevier, vol. 92(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
- Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
- Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
- Xiaojie Xu & Yun Zhang, 2023. "Coking coal futures price index forecasting with the neural network," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 349-359, June.
- Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
- Xu, Mengjie & Li, Xiang & Li, Qianwen & Sun, Chuanwang, 2024. "LNBi-GRU model for coal price prediction and pattern recognition analysis," Applied Energy, Elsevier, vol. 365(C).
- Wang, Tiantian & Wu, Fei & Dickinson, David & Zhao, Wanli, 2024. "Energy price bubbles and extreme price movements: Evidence from China's coal market," Energy Economics, Elsevier, vol. 129(C).
- Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
- Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021.
"Forecasting energy commodity prices: A large global dataset sparse approach,"
Energy Economics, Elsevier, vol. 98(C).
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2019. "Forecasting energy commodity prices: A large global dataset sparse approach," CAMA Working Papers 2019-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2021. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," BEMPS - Bozen Economics & Management Paper Series BEMPS83, Faculty of Economics and Management at the Free University of Bozen.
- Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2019. "Forecasting energy commodity prices: a large global dataset sparse approach," Working Papers 2019-09, University of Tasmania, Tasmanian School of Business and Economics.
- Davide Ferrari & Francesco Ravazzolo & Joaquin Vespignani, 2019. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," Working Papers No 11/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Davide Ferrari & Francesco Ravazzolo & Joaquin L. Vespignani, 2019. "Forecasting Energy Commodity Prices: A Large Global Dataset Sparse Approach," Globalization Institute Working Papers 376, Federal Reserve Bank of Dallas.
- Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
- Guangyong Zhang & Lixin Tian & Min Fu & Bingyue Wan & Wenbin Zhang, 2020. "Research on the Transmission Ability of China’s Thermal Coal Price Information Based on Directed Limited Penetrable Interdependent Network," Sustainability, MDPI, vol. 12(18), pages 1-23, September.
- Yang, Kailing & Zhang, Xi & Luo, Haojia & Hou, Xianping & Lin, Yu & Wu, Jingyu & Yu, Liang, 2024. "Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting," Energy, Elsevier, vol. 298(C).
- Parviz Sohrabi & Behshad Jodeiri Shokri & Hesam Dehghani, 2023. "Predicting coal price using time series methods and combination of radial basis function (RBF) neural network with time series," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 207-216, June.
- Li, Zheng-Zheng & Su, Chi-Wei & Chang, Tsangyao & Lobonţ, Oana-Ramona, 2022. "Policy-driven or market-driven? Evidence from steam coal price bubbles in China," Resources Policy, Elsevier, vol. 78(C).
- Lahmiri, Salim, 2024. "Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study," Resources Policy, Elsevier, vol. 92(C).
- Ding, Lili & Zhang, Rui & Zhao, Xin, 2024. "Forecasting carbon price in China unified carbon market using a novel hybrid method with three-stage algorithm and long short-term memory neural networks," Energy, Elsevier, vol. 288(C).
- Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
- Yujing Liu & Ruoyun Du & Dongxiao Niu, 2022. "Forecast of Coal Demand in Shanxi Province Based on GA—LSSVM under Multiple Scenarios," Energies, MDPI, vol. 15(17), pages 1-16, September.
- Hachmi Ben Ameur & Sahbi Boubaker & Zied Ftiti & Wael Louhichi & Kais Tissaoui, 2024. "Forecasting commodity prices: empirical evidence using deep learning tools," Annals of Operations Research, Springer, vol. 339(1), pages 349-367, August.
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
More about this item
Keywords
Arithmetic optimization algorithm; Variational modal decomposition; Deep temporal convolutional network; Mean impact value algorithm; Steam coal price forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:80:y:2023:i:c:s0301420722007024. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.