IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i2d10.1007_s10845-021-01890-0.html
   My bibliography  Save this article

Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric

Author

Listed:
  • Alexander Gerling

    (Furtwangen University of Applied Science
    Université de Haute-Alsace
    Université de Strasbourg)

  • Holger Ziekow

    (Furtwangen University of Applied Science)

  • Andreas Hess

    (Furtwangen University of Applied Science)

  • Ulf Schreier

    (Furtwangen University of Applied Science)

  • Christian Seiffer

    (Furtwangen University of Applied Science)

  • Djaffar Ould Abdeslam

    (Université de Haute-Alsace
    Université de Strasbourg)

Abstract

In order to manufacture products at low cost, machine learning (ML) is increasingly used in production, especially in high wage countries. Therefore, we introduce our PREFERML AutoML system, which is adapted to the production environment. The system is designed to predict production errors and to help identifying the root cause. It is particularly important to produce results for further investigations that can also be used by quality engineers. Quality engineers are not data science experts and are usually overwhelmed with the settings of an algorithm. Because of this, our system takes over this task and delivers a fully optimized ML model as a result. In this paper, we give a brief overview of what results can be achieved with a state-of-the-art classifier. Moreover, we present the results with optimized tree-based algorithms based on RandomSearchCV and HyperOpt hyperparameter tuning. The algorithms are optimized based on multiple metrics, which we will introduce in the following sections. Based on a cost-oriented metric we can show an improvement for companies to predict the outcome of later product tests. Further, we compare the results from the mentioned optimization approaches and evaluate the needed time for them.

Suggested Citation

  • Alexander Gerling & Holger Ziekow & Andreas Hess & Ulf Schreier & Christian Seiffer & Djaffar Ould Abdeslam, 2022. "Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 555-573, February.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:2:d:10.1007_s10845-021-01890-0
    DOI: 10.1007/s10845-021-01890-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01890-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01890-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Tangjitsitcharoen & P. Thesniyom & S. Ratanakuakangwan, 2017. "Prediction of surface roughness in ball-end milling process by utilizing dynamic cutting force ratio," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 13-21, January.
    2. Y.C. Ho & D.L. Pepyne, 2002. "Simple Explanation of the No-Free-Lunch Theorem and Its Implications," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 549-570, December.
    3. Zhenyu Liu & Donghao Zhang & Weiqiang Jia & Xianke Lin & Hui Liu, 2020. "An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1511-1529, August.
    4. Thi-Kien Dao & Tien-Szu Pan & Trong-The Nguyen & Jeng-Shyang Pan, 2018. "Parallel bat algorithm for optimizing makespan in job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 451-462, February.
    5. Guiqian Liu & Xiangdong Gao & Deyong You & Nanfeng Zhang, 2019. "Prediction of high power laser welding status based on PCA and SVM classification of multiple sensors," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 821-832, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenyu Liu & Donghao Zhang & Weiqiang Jia & Xianke Lin & Hui Liu, 2020. "An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1511-1529, August.
    2. Tao Ren & Yan Zhang & Shuenn-Ren Cheng & Chin-Chia Wu & Meng Zhang & Bo-yu Chang & Xin-yue Wang & Peng Zhao, 2020. "Effective Heuristic Algorithms Solving the Jobshop Scheduling Problem with Release Dates," Mathematics, MDPI, vol. 8(8), pages 1-25, July.
    3. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. PoTsang B. Huang & Huang-Jie Zhang & Yi-Ching Lin, 2019. "Development of a Grey online modeling surface roughness monitoring system in end milling operations," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1923-1936, April.
    5. Zengya Zhao & Sibao Wang & Zehua Wang & Shilong Wang & Chi Ma & Bo Yang, 2022. "Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 943-952, April.
    6. Hongfeng Wang & Min Huang & Junwei Wang, 2019. "An effective metaheuristic algorithm for flowshop scheduling with deteriorating jobs," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2733-2742, October.
    7. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    8. Chiara Furio & Luciano Lamberti & Catalin I. Pruncu, 2024. "Mechanical and Civil Engineering Optimization with a Very Simple Hybrid Grey Wolf—JAYA Metaheuristic Optimizer," Mathematics, MDPI, vol. 12(22), pages 1-68, November.
    9. Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
    10. Runquan Xiao & Yanling Xu & Zhen Hou & Chao Chen & Shanben Chen, 2022. "An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1419-1432, June.
    11. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
    12. Ai-Qing Tian & Shu-Chuan Chu & Jeng-Shyang Pan & Huanqing Cui & Wei-Min Zheng, 2020. "A Compact Pigeon-Inspired Optimization for Maximum Short-Term Generation Mode in Cascade Hydroelectric Power Station," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    13. Ning Ge & Guanghao Li & Li Zhang & Yi Liu, 2022. "Failure prediction in production line based on federated learning: an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2277-2294, December.
    14. Hegazy Rezk & Abdul Ghani Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem, 2023. "Optimized Fractional Maximum Power Point Tracking Using Bald Eagle Search for Thermoelectric Generation System," Energies, MDPI, vol. 16(10), pages 1-15, May.
    15. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    16. Roham Sadeghi Tabar & Kristina Wärmefjord & Rikard Söderberg & Lars Lindkvist, 2021. "Critical joint identification for efficient sequencing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 769-780, March.
    17. Deb, Sanchari & Gao, Xiao-Zhi & Tammi, Kari & Kalita, Karuna & Mahanta, Pinakeswar, 2021. "A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem," Energy, Elsevier, vol. 220(C).
    18. Yi Zhang & Peng Peng & Chongdang Liu & Yanyan Xu & Heming Zhang, 2022. "A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1057-1072, April.
    19. Hernán Peraza-Vázquez & Adrián Peña-Delgado & Prakash Ranjan & Chetan Barde & Arvind Choubey & Ana Beatriz Morales-Cepeda, 2021. "A Bio-Inspired Method for Mathematical Optimization Inspired by Arachnida Salticidade," Mathematics, MDPI, vol. 10(1), pages 1-32, December.
    20. Dayuan Wu & Ping Yan & You Guo & Han Zhou & Jian Chen, 2022. "A gear machining error prediction method based on adaptive Gaussian mixture regression considering stochastic disturbance," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2321-2339, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:2:d:10.1007_s10845-021-01890-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.