An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-020-01726-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhifen Zhang & Shanben Chen, 2017. "Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 207-218, January.
- Guiqian Liu & Xiangdong Gao & Deyong You & Nanfeng Zhang, 2019. "Prediction of high power laser welding status based on PCA and SVM classification of multiple sensors," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 821-832, February.
- Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Siyamalan Manivannan, 2023. "Automatic quality inspection in additive manufacturing using semi-supervised deep learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3091-3108, October.
- Jia Liu & Jiafeng Ye & Daniel Silva Izquierdo & Aleksandr Vinel & Nima Shamsaei & Shuai Shao, 2023. "A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3249-3275, December.
- Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
- Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
- Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
- Roham Sadeghi Tabar & Kristina Wärmefjord & Rikard Söderberg & Lars Lindkvist, 2021. "Critical joint identification for efficient sequencing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 769-780, March.
- Jiqian Mi & Yikai Zhang & Hui Li & Shengnan Shen & Yongqiang Yang & Changhui Song & Xin Zhou & Yucong Duan & Junwen Lu & Haibo Mai, 2023. "In-situ monitoring laser based directed energy deposition process with deep convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 683-693, February.
- Abdallah Amine Melakhsou & Mireille Batton-Hubert, 2023. "Welding monitoring and defect detection using probability density distribution and functional nonparametric kernel classifier," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1469-1481, March.
- Angel-Iván García-Moreno, 2022. "A fast method for monitoring molten pool in infrared image streams using gravitational superpixels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1779-1794, August.
- Wanyou Lv & Jiawen Xiong & Jianqi Shi & Yanhong Huang & Shengchao Qin, 2021. "A deep convolution generative adversarial networks based fuzzing framework for industry control protocols," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 441-457, February.
- Feiyang Li & Nian Cai & Xueliang Deng & Jiahao Li & Jianfa Lin & Han Wang, 2022. "Serial number inspection for ceramic membranes via an end-to-end photometric-induced convolutional neural network framework," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1373-1392, June.
- Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
- Alon Ratner & Michael Wood & Maximilian Chowanietz & Nikhil Kumar & Rashik Patel & Paul Hadlum & Abhishek Das & Iain Masters, 2022. "Laser Doppler Vibrometry for Evaluating the Quality of Welds in Lithium-Ion Supercells," Energies, MDPI, vol. 15(12), pages 1-20, June.
- Zhenyu Liu & Donghao Zhang & Weiqiang Jia & Xianke Lin & Hui Liu, 2020. "An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1511-1529, August.
- Alexander Gerling & Holger Ziekow & Andreas Hess & Ulf Schreier & Christian Seiffer & Djaffar Ould Abdeslam, 2022. "Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 555-573, February.
- Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.
- Zhangyue Shi & Abdullah Al Mamun & Chen Kan & Wenmeng Tian & Chenang Liu, 2023. "An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1815-1831, April.
- Vivek Mahato & Muhannad Ahmed Obeidi & Dermot Brabazon & Pádraig Cunningham, 2022. "Detecting voids in 3D printing using melt pool time series data," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 845-852, March.
- Zhenxing Cheng & Hu Wang & Gui-Rong Liu, 2021. "Deep convolutional neural network aided optimization for cold spray 3D simulation based on molecular dynamics," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1009-1023, April.
- Sinan Uguz & Osman Ipek, 2022. "Prediction of the parameters affecting the performance of compact heat exchangers with an innovative design using machine learning techniques," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1393-1417, June.
More about this item
Keywords
Robotic autonomous welding; Laser vision system; Automatic calibration; Robot motion planning; Image processing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-020-01726-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.