IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v220y2021ics0360544220327523.html
   My bibliography  Save this article

A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem

Author

Listed:
  • Deb, Sanchari
  • Gao, Xiao-Zhi
  • Tammi, Kari
  • Kalita, Karuna
  • Mahanta, Pinakeswar

Abstract

The current concern about the ever-escalating demand for energy, exhaustive nature of fossil fuels, global warming accompanied by climate change has necessitated the development of an alternate pollution-free mode of commute. Electric Vehicles (EV) are an environmentally friendly alternative to reduce the reliance on fossil fuel and pollution. For public acceptance of EVs, functionality and accessibility of charging stations is of paramount importance. Improper planning of EV charging stations, however, is a threat to the power grid stability. EV charging stations must be placed in the transport network in such a way that the safe limit of distribution network parameters is not violated. Thus, charging station placement problem is an intricate problem involving convolution of transport and distribution networks. A novel and simple approach of formulating the charging station placement problem is presented in this work. This approach takes into account integrated cost of charging station placement as well as penalties for violating grid constraints. For obtaining an optimal solution of this placement problem, two efficient evolutionary algorithms, such as Chicken Swarm Optimization (CSO) and Teaching Learning Based Optimization algorithm (TLBO) are amalgamated together thereby extracting the best features of the both algorithms. The efficacy of the proposed algorithm is tested by solving selected standard benchmark problems as well as charging station placement problem. The result of this hybrid algorithm is further compared with other algorithms used for this purpose.

Suggested Citation

  • Deb, Sanchari & Gao, Xiao-Zhi & Tammi, Kari & Kalita, Karuna & Mahanta, Pinakeswar, 2021. "A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem," Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544220327523
    DOI: 10.1016/j.energy.2020.119645
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220327523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awasthi, Abhishek & Venkitusamy, Karthikeyan & Padmanaban, Sanjeevikumar & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Singh, Asheesh K., 2017. "Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm," Energy, Elsevier, vol. 133(C), pages 70-78.
    2. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeshwar Mahanta, 2018. "Impact of Electric Vehicle Charging Station Load on Distribution Network," Energies, MDPI, vol. 11(1), pages 1-25, January.
    3. Y.C. Ho & D.L. Pepyne, 2002. "Simple Explanation of the No-Free-Lunch Theorem and Its Implications," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 549-570, December.
    4. Md Mainul Islam & Hussain Shareef & Azah Mohamed, 2017. "Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-20, December.
    5. Amir Sadegh Zakeri & Hossein Askarian Abyaneh, 2017. "Transmission Expansion Planning Using TLBO Algorithm in the Presence of Demand Response Resources," Energies, MDPI, vol. 10(9), pages 1-15, September.
    6. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    7. Chiwen Qu & Shi’an Zhao & Yanming Fu & Wei He, 2017. "Chicken Swarm Optimization Based on Elite Opposition-Based Learning," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sami M. Alshareef & Ahmed Fathy, 2023. "Efficient Red Kite Optimization Algorithm for Integrating the Renewable Sources and Electric Vehicle Fast Charging Stations in Radial Distribution Networks," Mathematics, MDPI, vol. 11(15), pages 1-30, July.
    2. Zixuan Wang & Qingyuan Yang & Chuwen Wang & Lanxi Wang, 2023. "Spatial Layout Analysis and Evaluation of Electric Vehicle Charging Infrastructure in Chongqing," Land, MDPI, vol. 12(4), pages 1-18, April.
    3. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    4. Duan, Ditao & Poursoleiman, Roza, 2021. "Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station," Utilities Policy, Elsevier, vol. 72(C).
    5. Amaro García-Suárez & José-Luis Guisado-Lizar & Fernando Diaz-del-Rio & Francisco Jiménez-Morales, 2021. "A Cellular Automata Agent-Based Hybrid Simulation Tool to Analyze the Deployment of Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    6. Gururaghav Raman & Gurupraanesh Raman & Jimmy Chih-Hsien Peng, 2022. "Resilience of urban public electric vehicle charging infrastructure to flooding," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Essam H. Houssein & Sanchari Deb & Diego Oliva & Hegazy Rezk & Hesham Alhumade & Mokhtar Said, 2021. "Performance of Gradient-Based Optimizer on Charging Station Placement Problem," Mathematics, MDPI, vol. 9(21), pages 1-16, November.
    8. Polisetty, S.P.R. Swamy & Jayanthi, R. & Sai Veerraju, M., 2023. "An intelligent optimal charging stations placement on the grid system for the electric vehicle application," Energy, Elsevier, vol. 285(C).
    9. Zeinab Teimoori & Abdulsalam Yassine, 2022. "A Review on Intelligent Energy Management Systems for Future Electric Vehicle Transportation," Sustainability, MDPI, vol. 14(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan S. Hayajneh & Xuewei Zhang, 2019. "Evaluation of Electric Vehicle Charging Station Network Planning via a Co-Evolution Approach," Energies, MDPI, vol. 13(1), pages 1-11, December.
    2. Nandini K. Krishnamurthy & Jayalakshmi N. Sabhahit & Vinay Kumar Jadoun & Dattatraya Narayan Gaonkar & Ashish Shrivastava & Vidya S. Rao & Ganesh Kudva, 2023. "Optimal Placement and Sizing of Electric Vehicle Charging Infrastructure in a Grid-Tied DC Microgrid Using Modified TLBO Method," Energies, MDPI, vol. 16(4), pages 1-27, February.
    3. Mihai Rata & Gabriela Rata & Constantin Filote & Maria Simona Raboaca & Adrian Graur & Ciprian Afanasov & Andreea-Raluca Felseghi, 2019. "The ElectricalVehicle Simulator for Charging Station in Mode 3 of IEC 61851-1 Standard," Energies, MDPI, vol. 13(1), pages 1-10, December.
    4. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.
    5. Praveen Prakash Singh & Fushuan Wen & Ivo Palu & Sulabh Sachan & Sanchari Deb, 2022. "Electric Vehicles Charging Infrastructure Demand and Deployment: Challenges and Solutions," Energies, MDPI, vol. 16(1), pages 1-21, December.
    6. Yian Yan & Huang Wang & Jiuchun Jiang & Weige Zhang & Yan Bao & Mei Huang, 2019. "Research on Configuration Methods of Battery Energy Storage System for Pure Electric Bus Fast Charging Station," Energies, MDPI, vol. 12(3), pages 1-17, February.
    7. Mayank Jha & Frede Blaabjerg & Mohammed Ali Khan & Varaha Satya Bharath Kurukuru & Ahteshamul Haque, 2019. "Intelligent Control of Converter for Electric Vehicles Charging Station," Energies, MDPI, vol. 12(12), pages 1-25, June.
    8. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    9. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    10. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    11. Davidov, Sreten, 2020. "Optimal charging infrastructure planning based on a charging convenience buffer," Energy, Elsevier, vol. 192(C).
    12. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.
    13. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    14. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    15. Paulo M. De Oliveira-De Jesus & Mario A. Rios & Gustavo A. Ramos, 2018. "Energy Loss Allocation in Smart Distribution Systems with Electric Vehicle Integration," Energies, MDPI, vol. 11(8), pages 1-19, July.
    16. Yan, Zheping & Zhang, Jinzhong & Tang, Jialing, 2021. "Path planning for autonomous underwater vehicle based on an enhanced water wave optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 192-241.
    17. Oscar Lopez Jaramillo & Joel Rinebold & Michael Kuby & Scott Kelley & Darren Ruddell & Rhian Stotts & Aimee Krafft & Elizabeth Wentz, 2021. "Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration," Energies, MDPI, vol. 14(22), pages 1-26, November.
    18. Thangaraj Yuvaraj & Thirukoilur Dhandapani Suresh & Arokiasamy Ananthi Christy & Thanikanti Sudhakar Babu & Benedetto Nastasi, 2023. "Modelling and Allocation of Hydrogen-Fuel-Cell-Based Distributed Generation to Mitigate Electric Vehicle Charging Station Impact and Reliability Analysis on Electrical Distribution Systems," Energies, MDPI, vol. 16(19), pages 1-31, September.
    19. K. Habibul Kabir & Shafquat Yasar Aurko & Md. Saifur Rahman, 2021. "Smart Power Management in OIC Countries: A Critical Overview Using SWOT-AHP and Hybrid MCDM Analysis," Energies, MDPI, vol. 14(20), pages 1-50, October.
    20. Ferro, G. & Minciardi, R. & Robba, M., 2020. "A user equilibrium model for electric vehicles: Joint traffic and energy demand assignment," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:220:y:2021:i:c:s0360544220327523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.