IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i2d10.1007_s10845-016-1286-y.html
   My bibliography  Save this article

Prediction of high power laser welding status based on PCA and SVM classification of multiple sensors

Author

Listed:
  • Guiqian Liu

    (Guangdong University of Technology)

  • Xiangdong Gao

    (Guangdong University of Technology)

  • Deyong You

    (Guangdong University of Technology)

  • Nanfeng Zhang

    (Guangdong University of Technology)

Abstract

In order to explore the relationship between the welding process and welded quality, a multiple sensor fusion system was built to obtain the photodiode and visible light information during the welding. Features of keyhole, plasma and spatters were extracted from five sensors, including two photodiode sensors, one spectrometer sensor, one ultraviolet and visible light sensing camera and one auxiliary illumination sensing camera, 15 features were analyzed by normalization and principle component analysis, and principle component numbers was chosen as input parameters of support vector machine classification, Three weld quality types were defined according to the weld seam width and weld depth. The overall accuracy of training data was 98%, and the overall accuracy of testing data was 91%, respectively. Experimental results showed that the estimation on welding status was accurate and effective, thus providing an experimental example of monitoring high-power disk laser welding quality.

Suggested Citation

  • Guiqian Liu & Xiangdong Gao & Deyong You & Nanfeng Zhang, 2019. "Prediction of high power laser welding status based on PCA and SVM classification of multiple sensors," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 821-832, February.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1286-y
    DOI: 10.1007/s10845-016-1286-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-016-1286-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-016-1286-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuanfang He & Xuejun Li, 2016. "A quantitative estimation technique for welding quality using local mean decomposition and support vector machine," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 525-533, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Gerling & Holger Ziekow & Andreas Hess & Ulf Schreier & Christian Seiffer & Djaffar Ould Abdeslam, 2022. "Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 555-573, February.
    2. Alon Ratner & Michael Wood & Maximilian Chowanietz & Nikhil Kumar & Rashik Patel & Paul Hadlum & Abhishek Das & Iain Masters, 2022. "Laser Doppler Vibrometry for Evaluating the Quality of Welds in Lithium-Ion Supercells," Energies, MDPI, vol. 15(12), pages 1-20, June.
    3. Carlos Gonzalez-Val & Adrian Pallas & Veronica Panadeiro & Alvaro Rodriguez, 2020. "A convolutional approach to quality monitoring for laser manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 789-795, March.
    4. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    5. Zhenyu Liu & Donghao Zhang & Weiqiang Jia & Xianke Lin & Hui Liu, 2020. "An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1511-1529, August.
    6. Roham Sadeghi Tabar & Kristina Wärmefjord & Rikard Söderberg & Lars Lindkvist, 2021. "Critical joint identification for efficient sequencing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 769-780, March.
    7. Runquan Xiao & Yanling Xu & Zhen Hou & Chao Chen & Shanben Chen, 2022. "An automatic calibration algorithm for laser vision sensor in robotic autonomous welding system," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1419-1432, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhou & Tianjian Li & Wenjia Zheng & Zhongdian Zhang & Zhenglong Lei & Laijun Wu & Shiliang Zhu & Wenming Wang, 2022. "Online monitoring of resistance spot welding electrode wear state based on dynamic resistance," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 91-101, January.
    2. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    3. Liang Tian & Yu Luo, 2020. "A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 575-596, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1286-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.