IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i4d10.1007_s10845-020-01716-5.html
   My bibliography  Save this article

A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing

Author

Listed:
  • Yi Zhang

    (Tsinghua University
    Naval Research Academy)

  • Peng Peng

    (Tsinghua University)

  • Chongdang Liu

    (Tsinghua University)

  • Yanyan Xu

    (Tsinghua University
    Unit 94926)

  • Heming Zhang

    (Tsinghua University)

Abstract

Fault detection is one of the most important research topics to guarantee safe operation and product quality consistency especially in the batch process of semiconductor manufacturing. However, the imbalanced fault data bring great challenges to extract the high nonlinearity and inherently time-varying dynamics of the batch process. Motivated by these, we propose a sequential oversampling discrimination approach for imbalanced batch process fault detection. Especially, different from the traditional oversampling methods, which extract temporal features from the whole process, we transform a whole batch sequence into multiple fixed-length sequences each batch by a sliding window, to extract the robust time-varying dynamics features. Then, an oversampling neural network is performed to balance both sequences of minority and majority classes. The needed sequences of the minority class are generated by an improved combination model of variational auto-encoder and generative adversarial network. Finally, a simplified sequential neural network is learned by the balanced-class sequences to perform the discrimination. We conduct extensive experiments based on two datasets of semiconductor manufacturing. One is a benchmark dataset and the other is a dataset from a real production line. The results achieved significant improvement, compared with other state-of-art fault detection methods and oversampling techniques.

Suggested Citation

  • Yi Zhang & Peng Peng & Chongdang Liu & Yanyan Xu & Heming Zhang, 2022. "A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1057-1072, April.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-020-01716-5
    DOI: 10.1007/s10845-020-01716-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01716-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01716-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qifa Xu & Shixiang Lu & Weiyin Jia & Cuixia Jiang, 2020. "Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1467-1481, August.
    2. Zhenyu Liu & Donghao Zhang & Weiqiang Jia & Xianke Lin & Hui Liu, 2020. "An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1511-1529, August.
    3. Maroua Said & Khaoula ben Abdellafou & Okba Taouali, 2020. "Machine learning technique for data-driven fault detection of nonlinear processes," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 865-884, April.
    4. Qianhui Wu & Keqin Ding & Biqing Huang, 2020. "Approach for fault prognosis using recurrent neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1621-1633, October.
    5. Durga Prasad Penumuru & Sreekumar Muthuswamy & Premkumar Karumbu, 2020. "Identification and classification of materials using machine vision and machine learning in the context of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1229-1241, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Emmanuel Ekene Okere & Ebrahiema Arendse & Alemayehu Ambaw Tsige & Willem Jacobus Perold & Umezuruike Linus Opara, 2022. "Pomegranate Quality Evaluation Using Non-Destructive Approaches: A Review," Agriculture, MDPI, vol. 12(12), pages 1-25, November.
    3. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    5. Yun Peng & Shenyi Zhao & Jizhan Liu, 2021. "Fused Deep Features-Based Grape Varieties Identification Using Support Vector Machine," Agriculture, MDPI, vol. 11(9), pages 1-16, September.
    6. Wang, Zixuan & Qin, Bo & Sun, Haiyue & Zhang, Jian & Butala, Mark D. & Demartino, Cristoforo & Peng, Peng & Wang, Hongwei, 2023. "An imbalanced semi-supervised wind turbine blade icing detection method based on contrastive learning," Renewable Energy, Elsevier, vol. 212(C), pages 251-262.
    7. George Lãzãroiu & Armenia Androniceanu & Iulia Grecu & Gheorghe Grecu & Octav Neguri?ã, 2022. "Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1047-1080, December.
    8. Cuixia Jiang & Hao Chen & Qifa Xu & Xiangxiang Wang, 2023. "Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1667-1681, April.
    9. Rui Zhang & Na Zhao & Liuhu Fu & Xiaolu Bai & Jianghui Cai, 2023. "Recognizing defects in stainless steel welds based on multi-domain feature expression and self-optimization," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1293-1309, March.
    10. Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
    11. Meiling Cai & Yaqin Shi & Jinping Liu & Jean Paul Niyoyita & Hadi Jahanshahi & Ayman A. Aly, 2023. "DRKPCA-VBGMM: fault monitoring via dynamically-recursive kernel principal component analysis with variational Bayesian Gaussian mixture model," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2625-2653, August.
    12. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    13. Ning Ge & Guanghao Li & Li Zhang & Yi Liu, 2022. "Failure prediction in production line based on federated learning: an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2277-2294, December.
    14. Zhengyang Fan & Wanru Li & Kuo-Chu Chang, 2023. "A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    15. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    16. Benjamin Lutz & Dominik Kisskalt & Andreas Mayr & Daniel Regulin & Matteo Pantano & Jörg Franke, 2021. "In-situ identification of material batches using machine learning for machining operations," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1485-1495, June.
    17. Xie, Tianming & Xu, Qifa & Jiang, Cuixia & Lu, Shixiang & Wang, Xiangxiang, 2023. "The fault frequency priors fusion deep learning framework with application to fault diagnosis of offshore wind turbines," Renewable Energy, Elsevier, vol. 202(C), pages 143-153.
    18. Dayuan Wu & Ping Yan & You Guo & Han Zhou & Jian Chen, 2022. "A gear machining error prediction method based on adaptive Gaussian mixture regression considering stochastic disturbance," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2321-2339, December.
    19. Jorge L. Alonso-Perez & Selene L. Cardenas-Maciel & Balter Trujillo-Navarrete & Edgar A. Reynoso-Soto & Nohe R. Cazarez-Cazarez, 2022. "An approach for designing smart manufacturing for the research and development of dye-sensitize solar cell," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2307-2320, December.
    20. Jin, Zhenglei & Xu, Qifa & Jiang, Cuixia & Wang, Xiangxiang & Chen, Hao, 2023. "Ordinal few-shot learning with applications to fault diagnosis of offshore wind turbines," Renewable Energy, Elsevier, vol. 206(C), pages 1158-1169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-020-01716-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.