IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2770-d669975.html
   My bibliography  Save this article

An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem

Author

Listed:
  • Mokhtar Said

    (Electrical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum 43518, Egypt)

  • Ali M. El-Rifaie

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

  • Mohamed A. Tolba

    (Nuclear Research Center, Reactors Department, Egyptian Atomic Energy Authority, Cairo 11787, Egypt
    Electrical Power Systems Department, Moscow Power Engineering Institute, 111250 Moscow, Russia)

  • Essam H. Houssein

    (Faculty of Computers and Information, Minia University, Minia 61519, Egypt)

  • Sanchari Deb

    (VTT Technical Research Centre of Finland Ltd., 02044 Espoo, Finland)

Abstract

Economic Load Dispatch (ELD) is a complicated and demanding problem for power engineers. ELD relates to the minimization of the economic cost of production, thereby allocating the produced power by each unit in the most possible economic manner. In recent years, emphasis has been laid on minimization of emissions, in addition to cost, resulting in the Combined Economic and Emission Dispatch (CEED) problem. The solutions of the ELD and CEED problems are mostly dominated by metaheuristics. The performance of the Chameleon Swarm Algorithm (CSA) for solving the ELD problem was tested in this work. CSA mimics the hunting and food searching mechanism of chameleons. This algorithm takes into account the dynamics of food hunting of the chameleon on trees, deserts, and near swamps. The performance of the aforementioned algorithm was compared with a number of advanced algorithms in solving the ELD and CEED problems, such as Sine Cosine Algorithm (SCA), Grey Wolf Optimization (GWO), and Earth Worm Algorithm (EWA). The simulated results established the efficacy of the proposed CSA algorithm. The power mismatch factor is the main item in ELD problems. The best value of this factor must tend to nearly zero. The CSA algorithm achieves the best power mismatch values of 3.16 × 10 − 13 , 4.16 × 10 − 12 and 1.28 × 10 − 12 for demand loads of 700, 1000, and 1200 MW, respectively, of the ELD problem. The CSA algorithm achieves the best power mismatch values of 6.41 × 10 − 13 , 8.92 × 10 − 13 and 1.68 × 10 − 12 for demand loads of 700, 1000, and 1200 MW, respectively, of the CEED problem. Thus, the CSA algorithm was found to be superior to the algorithms compared in this work.

Suggested Citation

  • Mokhtar Said & Ali M. El-Rifaie & Mohamed A. Tolba & Essam H. Houssein & Sanchari Deb, 2021. "An Efficient Chameleon Swarm Algorithm for Economic Load Dispatch Problem," Mathematics, MDPI, vol. 9(21), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2770-:d:669975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pandian Vasant & Fahad Parvez Mahdi & Jose Antonio Marmolejo-Saucedo & Igor Litvinchev & Roman Rodriguez Aguilar & Junzo Watada, 2020. "Quantum-Behaved Bat Algorithm for Solving the Economic Load Dispatch Problem Considering a Valve-Point Effect," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 11(3), pages 41-57, July.
    2. M. A. El-Shorbagy & A. A. Mousa & Baogui Xin, 2021. "Constrained Multiobjective Equilibrium Optimizer Algorithm for Solving Combined Economic Emission Dispatch Problem," Complexity, Hindawi, vol. 2021, pages 1-14, January.
    3. Abdulrashid Muhammad Kabir & Mohsin Kamal & Fiaz Ahmad & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez & Faizan Mehmood, 2021. "Optimized Economic Load Dispatch with Multiple Fuels and Valve-Point Effects Using Hybrid Genetic–Artificial Fish Swarm Algorithm," Sustainability, MDPI, vol. 13(19), pages 1-27, September.
    4. Stavros P. Adam & Stamatios-Aggelos N. Alexandropoulos & Panos M. Pardalos & Michael N. Vrahatis, 2019. "No Free Lunch Theorem: A Review," Springer Optimization and Its Applications, in: Ioannis C. Demetriou & Panos M. Pardalos (ed.), Approximation and Optimization, pages 57-82, Springer.
    5. Loris Serafino, 2021. "The No Free Lunch Theorem: What Are its Main Implications for the Optimization Practice?," Springer Optimization and Its Applications, in: Panos M. Pardalos & Varvara Rasskazova & Michael N. Vrahatis (ed.), Black Box Optimization, Machine Learning, and No-Free Lunch Theorems, pages 357-372, Springer.
    6. Y.C. Ho & D.L. Pepyne, 2002. "Simple Explanation of the No-Free-Lunch Theorem and Its Implications," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 549-570, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Abd Elaziz & Mahmoud Ahmadein & Sabbah Ataya & Naser Alsaleh & Agostino Forestiero & Ammar H. Elsheikh, 2022. "A Quantum-Based Chameleon Swarm for Feature Selection," Mathematics, MDPI, vol. 10(19), pages 1-17, October.
    2. Liang, Hejun & Pirouzi, Sasan, 2024. "Energy management system based on economic Flexi-reliable operation for the smart distribution network including integrated energy system of hydrogen storage and renewable sources," Energy, Elsevier, vol. 293(C).
    3. Aokang Pang & Huijun Liang & Chenhao Lin & Lei Yao, 2023. "A Surrogate-Assisted Adaptive Bat Algorithm for Large-Scale Economic Dispatch," Energies, MDPI, vol. 16(2), pages 1-23, January.
    4. Hu, Gang & Yang, Rui & Wei, Guo, 2023. "Hybrid chameleon swarm algorithm with multi-strategy: A case study of degree reduction for disk Wang–Ball curves," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 709-769.
    5. Alaa A. K. Ismaeel & Essam H. Houssein & Doaa Sami Khafaga & Eman Abdullah Aldakheel & Ahmed S. AbdElrazek & Mokhtar Said, 2023. "Performance of Osprey Optimization Algorithm for Solving Economic Load Dispatch Problem," Mathematics, MDPI, vol. 11(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Masoud Zahedi Vahid & Ziad M. Ali & Ebrahim Seifi Najmi & Abdollah Ahmadi & Foad H. Gandoman & Shady H. E. Abdel Aleem, 2021. "Optimal Allocation and Planning of Distributed Power Generation Resources in a Smart Distribution Network Using the Manta Ray Foraging Optimization Algorithm," Energies, MDPI, vol. 14(16), pages 1-25, August.
    3. Jilong Zhang & Yuan Diao, 2024. "Hierarchical Learning-Enhanced Chaotic Crayfish Optimization Algorithm: Improving Extreme Learning Machine Diagnostics in Breast Cancer," Mathematics, MDPI, vol. 12(17), pages 1-26, August.
    4. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    5. Marco-Antonio Moreno-Ibarra & Yenny Villuendas-Rey & Miltiadis D. Lytras & Cornelio Yáñez-Márquez & Julio-César Salgado-Ramírez, 2021. "Classification of Diseases Using Machine Learning Algorithms: A Comparative Study," Mathematics, MDPI, vol. 9(15), pages 1-21, July.
    6. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
    7. Hegazy Rezk & Abdul Ghani Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem, 2023. "Optimized Fractional Maximum Power Point Tracking Using Bald Eagle Search for Thermoelectric Generation System," Energies, MDPI, vol. 16(10), pages 1-15, May.
    8. Deb, Sanchari & Gao, Xiao-Zhi & Tammi, Kari & Kalita, Karuna & Mahanta, Pinakeswar, 2021. "A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem," Energy, Elsevier, vol. 220(C).
    9. Hernán Peraza-Vázquez & Adrián Peña-Delgado & Prakash Ranjan & Chetan Barde & Arvind Choubey & Ana Beatriz Morales-Cepeda, 2021. "A Bio-Inspired Method for Mathematical Optimization Inspired by Arachnida Salticidade," Mathematics, MDPI, vol. 10(1), pages 1-32, December.
    10. Zekharya Danin & Abhishek Sharma & Moshe Averbukh & Arabinda Meher, 2022. "Improved Moth Flame Optimization Approach for Parameter Estimation of Induction Motor," Energies, MDPI, vol. 15(23), pages 1-13, November.
    11. Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Giovanni Giachetti & Álex Paz & Alvaro Peña Fritz, 2024. "Chaotic Binarization Schemes for Solving Combinatorial Optimization Problems Using Continuous Metaheuristics," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    12. José-Luis Velázquez-Rodríguez & Yenny Villuendas-Rey & Oscar Camacho-Nieto & Cornelio Yáñez-Márquez, 2020. "A Novel and Simple Mathematical Transform Improves the Perfomance of Lernmatrix in Pattern Classification," Mathematics, MDPI, vol. 8(5), pages 1-46, May.
    13. Elena Niculina Dragoi & Vlad Dafinescu, 2021. "Review of Metaheuristics Inspired from the Animal Kingdom," Mathematics, MDPI, vol. 9(18), pages 1-52, September.
    14. Alaa A. K. Ismaeel & Essam H. Houssein & Doaa Sami Khafaga & Eman Abdullah Aldakheel & Ahmed S. AbdElrazek & Mokhtar Said, 2023. "Performance of Osprey Optimization Algorithm for Solving Economic Load Dispatch Problem," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    15. Kottath, Rahul & Singh, Priyanka, 2023. "Influencer buddy optimization: Algorithm and its application to electricity load and price forecasting problem," Energy, Elsevier, vol. 263(PC).
    16. Kutlu Onay, Funda, 2023. "A novel improved chef-based optimization algorithm with Gaussian random walk-based diffusion process for global optimization and engineering problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 195-223.
    17. Satya Verma & Satya Prakash Sahu & Tirath Prasad Sahu, 2024. "Two-Stage Hybrid Feature Selection Approach Using Levy’s Flight Based Chicken Swarm Optimization for Stock Market Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2193-2224, June.
    18. Eliton Smith dos Santos & Marcus Vinícius Alves Nunes & Manoel Henrique Reis Nascimento & Jandecy Cabral Leite, 2022. "Rational Application of Electric Power Production Optimization through Metaheuristics Algorithm," Energies, MDPI, vol. 15(9), pages 1-31, April.
    19. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & José García, 2022. "Swarm-Inspired Computing to Solve Binary Optimization Problems: A Backward Q-Learning Binarization Scheme Selector," Mathematics, MDPI, vol. 10(24), pages 1-30, December.
    20. Alexander Gerling & Holger Ziekow & Andreas Hess & Ulf Schreier & Christian Seiffer & Djaffar Ould Abdeslam, 2022. "Comparison of algorithms for error prediction in manufacturing with automl and a cost-based metric," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 555-573, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2770-:d:669975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.