IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p129-d1016879.html
   My bibliography  Save this article

Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review

Author

Listed:
  • Marcelo Becerra-Rozas

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • José Lemus-Romani

    (Escuela de Construcción Civil, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile)

  • Felipe Cisternas-Caneo

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Broderick Crawford

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Ricardo Soto

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile)

  • Gino Astorga

    (Escuela de Negocios Internacionales, Universidad de Valparaíso, Viña del Mar 2572048, Chile)

  • Carlos Castro

    (Departamento de Informática, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile)

  • José García

    (Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile)

Abstract

For years, extensive research has been in the binarization of continuous metaheuristics for solving binary-domain combinatorial problems. This paper is a continuation of a previous review and seeks to draw a comprehensive picture of the various ways to binarize this type of metaheuristics; the study uses a standard systematic review consisting of the analysis of 512 publications from 2017 to January 2022 (5 years). The work will provide a theoretical foundation for novice researchers tackling combinatorial optimization using metaheuristic algorithms and for expert researchers analyzing the binarization mechanism’s impact on the metaheuristic algorithms’ performance. Structuring this information allows for improving the results of metaheuristics and broadening the spectrum of binary problems to be solved. We can conclude from this study that there is no single general technique capable of efficient binarization; instead, there are multiple forms with different performances.

Suggested Citation

  • Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:129-:d:1016879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Zhile & Li, Kang & Guo, Yuanjun & Feng, Shengzhong & Niu, Qun & Xue, Yusheng & Foley, Aoife, 2019. "A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles," Energy, Elsevier, vol. 170(C), pages 889-905.
    2. José García & José V. Martí & Víctor Yepes, 2020. "The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-22, May.
    3. Víctor Yepes & José V. Martí & José García, 2020. "Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    4. Adil Baykasoğlu & Fehmi Burcin Ozsoydan & M. Emre Senol, 2020. "Weighted superposition attraction algorithm for binary optimization problems," Operational Research, Springer, vol. 20(4), pages 2555-2581, December.
    5. José García & Gino Astorga & Víctor Yepes, 2021. "An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics," Mathematics, MDPI, vol. 9(3), pages 1-20, January.
    6. Yanhong Feng & Haizhong An & Xiangyun Gao, 2018. "The Importance of Transfer Function in Solving Set-Union Knapsack Problem Based on Discrete Moth Search Algorithm," Mathematics, MDPI, vol. 7(1), pages 1-25, December.
    7. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    8. Broderick Crawford & Ricardo Soto & Gino Astorga & José García & Carlos Castro & Fernando Paredes, 2017. "Putting Continuous Metaheuristics to Work in Binary Search Spaces," Complexity, Hindawi, vol. 2017, pages 1-19, May.
    9. José García & Francisco Altimiras & Alvaro Peña & Gino Astorga & Oscar Peredo, 2018. "A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems," Complexity, Hindawi, vol. 2018, pages 1-15, July.
    10. Xianghua Chu & Shuxiang Li & Da Gao & Wei Zhao & Jianshuang Cui & Linya Huang, 2020. "A Binary Superior Tracking Artificial Bee Colony with Dynamic Cauchy Mutation for Feature Selection," Complexity, Hindawi, vol. 2020, pages 1-13, November.
    11. Coniglio, Stefano & Furini, Fabio & San Segundo, Pablo, 2021. "A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflicts," European Journal of Operational Research, Elsevier, vol. 289(2), pages 435-455.
    12. Y.C. Ho & D.L. Pepyne, 2002. "Simple Explanation of the No-Free-Lunch Theorem and Its Implications," Journal of Optimization Theory and Applications, Springer, vol. 115(3), pages 549-570, December.
    13. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    14. José García & Victor Yepes & José V. Martí, 2020. "A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo Figueroa-Torrez & Orlando Durán & Broderick Crawford & Felipe Cisternas-Caneo, 2023. "A Binary Black Widow Optimization Algorithm for Addressing the Cell Formation Problem Involving Alternative Routes and Machine Reliability," Mathematics, MDPI, vol. 11(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José García & José Lemus-Romani & Francisco Altimiras & Broderick Crawford & Ricardo Soto & Marcelo Becerra-Rozas & Paola Moraga & Alex Paz Becerra & Alvaro Peña Fritz & Jose-Miguel Rubio & Gino Astor, 2021. "A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem," Mathematics, MDPI, vol. 9(20), pages 1-19, October.
    2. José García & Victor Yepes & José V. Martí, 2020. "A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    3. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).
    4. José García & José V. Martí & Víctor Yepes, 2020. "The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-22, May.
    5. José García & Paola Moraga & Broderick Crawford & Ricardo Soto & Hernan Pinto, 2022. "Binarization Technique Comparisons of Swarm Intelligence Algorithm: An Application to the Multi-Demand Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    6. Zhu, Xiaodong & Zhao, Shihao & Yang, Zhile & Zhang, Ning & Xu, Xinzhi, 2022. "A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors," Energy, Elsevier, vol. 238(PC).
    7. José García & Paola Moraga & Matias Valenzuela & Hernan Pinto, 2020. "A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    8. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & José García, 2022. "Swarm-Inspired Computing to Solve Binary Optimization Problems: A Backward Q-Learning Binarization Scheme Selector," Mathematics, MDPI, vol. 10(24), pages 1-30, December.
    9. Basu, Mousumi, 2023. "Fuel constrained commitment scheduling for combined heat and power dispatch incorporating electric vehicle parking lot," Energy, Elsevier, vol. 276(C).
    10. José García & Gino Astorga & Víctor Yepes, 2021. "An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics," Mathematics, MDPI, vol. 9(3), pages 1-20, January.
    11. Aylin Ece Kayabekir & Zülal Akbay Arama & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2020. "Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications," Sustainability, MDPI, vol. 12(15), pages 1-30, July.
    12. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    13. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    14. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    15. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    16. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    18. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2023. "Features for the 0-1 knapsack problem based on inclusionwise maximal solutions," European Journal of Operational Research, Elsevier, vol. 311(1), pages 36-55.
    19. Mohammad Masih Sediqi & Mohammed Elsayed Lotfy & Abdul Matin Ibrahimi & Tomonobu Senjyu & Narayanan. K, 2019. "Stochastic Unit Commitment and Optimal Power Trading Incorporating PV Uncertainty," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    20. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:129-:d:1016879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.