IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i6d10.1007_s10845-021-01764-5.html
   My bibliography  Save this article

Machining quality monitoring (MQM) in laser-assisted micro-milling of glass using cutting force signals: an image-based deep transfer learning

Author

Listed:
  • Yunhan Kim

    (Seoul National University)

  • Taekyum Kim

    (Seoul National University)

  • Byeng D. Youn

    (Seoul National University
    Seoul National University
    OnePredict Inc)

  • Sung-Hoon Ahn

    (Seoul National University
    Seoul National University)

Abstract

This research proposes a method for machining quality monitoring (MQM) in laser-assisted micro-milling (LAMM) of glass. In tool-based mechanical processing including LAMM, the machining quality is generally affected by machining parameters and tool condition; therefore, previous studies have intensively focused on finding optimal machining parameters and monitoring tool condition to secure machining quality. However, prior work has not considered the degradation of machining quality over time. Furthermore, previous studies have manually designed features from sensory signals; these approaches are difficult to be applied without prior domain knowledge in LAMM of glass. In LAMM, MQM is more important than it is in metal cutting because glass materials are likely to have cracks from the mechanical contact between the workpiece and the tool. In this research, we employ a novel image-based deep transfer learning method for MQM in LAMM of glass. Our approach is based on a pre-trained model trained on a large-scale image dataset; this model is equipped to extract meaningful features from the images. To visually reflect the machining quality, we propose a multi-layer recurrence plot (MRP) that enables the cutting force signals to be transformed into two-dimensional images. From the experimental validation in this research, the proposed MQM method is found to have the best classification accuracy of machining quality, as compared to other existing methods. The proposed method is expected to predict the machining quality of the micro-milling of glass in advance with improved accuracy before the machining quality is degraded.

Suggested Citation

  • Yunhan Kim & Taekyum Kim & Byeng D. Youn & Sung-Hoon Ahn, 2022. "Machining quality monitoring (MQM) in laser-assisted micro-milling of glass using cutting force signals: an image-based deep transfer learning," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1813-1828, August.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:6:d:10.1007_s10845-021-01764-5
    DOI: 10.1007/s10845-021-01764-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01764-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01764-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haiyong Chen & Yue Pang & Qidi Hu & Kun Liu, 2020. "Solar cell surface defect inspection based on multispectral convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 453-468, February.
    2. S. Tangjitsitcharoen & P. Thesniyom & S. Ratanakuakangwan, 2017. "Prediction of surface roughness in ball-end milling process by utilizing dynamic cutting force ratio," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 13-21, January.
    3. George M. Whitesides, 2006. "The origins and the future of microfluidics," Nature, Nature, vol. 442(7101), pages 368-373, July.
    4. Xiang Li & Xiaodong Jia & Qibo Yang & Jay Lee, 2020. "Quality analysis in metal additive manufacturing with deep learning," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2003-2017, December.
    5. Zhiwei Zhao & Yingguang Li & Changqing Liu & James Gao, 2020. "On-line part deformation prediction based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 561-574, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhicheng Xu & Vignesh Selvaraj & Sangkee Min, 2024. "State identification of a 5-axis ultra-precision CNC machine tool using energy consumption data assisted by multi-output densely connected 1D-CNN model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 147-160, January.
    2. Shijie Wang & Haiyong Chen & Kun Liu & Ying Zhou & Huichuan Feng, 2023. "Meta-FSDet: a meta-learning based detector for few-shot defects of photovoltaic modules," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3413-3427, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanan Pan & Renke Kang & Zhigang Dong & Wenhao Du & Sen Yin & Yan Bao, 2022. "On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 675-685, March.
    2. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    3. Nannan Xu & Xinze Cui & Xin Wang & Wei Zhang & Tianyu Zhao, 2022. "An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    4. Mohamed Elhefnawy & Ahmed Ragab & Mohamed-Salah Ouali, 2023. "Polygon generation and video-to-video translation for time-series prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 261-279, January.
    5. Chiwu Bu & Tao Liu & Tao Wang & Hai Zhang & Stefano Sfarra, 2023. "A CNN-Architecture-Based Photovoltaic Cell Fault Classification Method Using Thermographic Images," Energies, MDPI, vol. 16(9), pages 1-13, April.
    6. PoTsang B. Huang & Huang-Jie Zhang & Yi-Ching Lin, 2019. "Development of a Grey online modeling surface roughness monitoring system in end milling operations," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1923-1936, April.
    7. Nazanin Hosseini Arian & Alireza Pooya & Fariborz Rahimnia & Ali Sibevei, 2021. "Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach," Operations Management Research, Springer, vol. 14(3), pages 467-493, December.
    8. Meng Xiao & Bo Yang & Shilong Wang & Yongsheng Chang & Song Li & Gang Yi, 2023. "Research on recognition methods of spot-welding surface appearances based on transfer learning and a lightweight high-precision convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2153-2170, June.
    9. Yuqing Chang & Yuqian Wang & Wen Li & Zewen Wei & Shichuan Tang & Rui Chen, 2023. "Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review," IJERPH, MDPI, vol. 20(8), pages 1-30, April.
    10. Zengya Zhao & Sibao Wang & Zehua Wang & Shilong Wang & Chi Ma & Bo Yang, 2022. "Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 943-952, April.
    11. Xuling Liu & Huafeng Song & Wensi Zuo & Guoyong Ye & Shaobo Jin & Liangwen Wang & Songjing Li, 2022. "Theoretical and Experimental Studies of a PDMS Pneumatic Microactuator for Microfluidic Systems," Energies, MDPI, vol. 15(22), pages 1-19, November.
    12. Saroj Kumar & Lasse ten Siethoff & Malin Persson & Mercy Lard & Geertruy te Kronnie & Heiner Linke & Alf Månsson, 2012. "Antibodies Covalently Immobilized on Actin Filaments for Fast Myosin Driven Analyte Transport," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-16, October.
    13. Gaikwad, Harshad Sanjay & Basu, Dipankar Narayan & Mondal, Pranab Kumar, 2017. "Non-linear drag induced irreversibility minimization in a viscous dissipative flow through a micro-porous channel," Energy, Elsevier, vol. 119(C), pages 588-600.
    14. Banerjee, Rintu & Kumar, S.P. Jeevan & Mehendale, Ninad & Sevda, Surajbhan & Garlapati, Vijay Kumar, 2019. "Intervention of microfluidics in biofuel and bioenergy sectors: Technological considerations and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 548-558.
    15. Badriyah Alhalaili & Ileana Nicoleta Popescu & Carmen Otilia Rusanescu & Ruxandra Vidu, 2022. "Microfluidic Devices and Microfluidics-Integrated Electrochemical and Optical (Bio)Sensors for Pollution Analysis: A Review," Sustainability, MDPI, vol. 14(19), pages 1-38, October.
    16. Tae San Kim & Jong Wook Lee & Won Kyung Lee & So Young Sohn, 2022. "Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1715-1724, August.
    17. Yuwei Mao & Hui Lin & Christina Xuan Yu & Roger Frye & Darren Beckett & Kevin Anderson & Lars Jacquemetton & Fred Carter & Zhangyuan Gao & Wei-keng Liao & Alok N. Choudhary & Kornel Ehmann & Ankit Agr, 2023. "A deep learning framework for layer-wise porosity prediction in metal powder bed fusion using thermal signatures," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 315-329, January.
    18. Brian S. Flowers & Ryan L. Hartman, 2012. "Particle Handling Techniques in Microchemical Processes," Challenges, MDPI, vol. 3(2), pages 1-18, August.
    19. Matteo Bugatti & Bianca Maria Colosimo, 2022. "Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 293-309, January.
    20. Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:6:d:10.1007_s10845-021-01764-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.