IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i7d10.1007_s10845-022-01940-1.html
   My bibliography  Save this article

Switching strategy-based hybrid evolutionary algorithms for job shop scheduling problems

Author

Listed:
  • Shahed Mahmud

    (University of New South Wales
    Rajshahi University of Engineering & Technology)

  • Ripon K. Chakrabortty

    (University of New South Wales)

  • Alireza Abbasi

    (University of New South Wales)

  • Michael J. Ryan

    (Capability Associates)

Abstract

Since production efficiency and costs are directly affected by the ways in which jobs are scheduled, scholars have advanced a number of meta-heuristic algorithms to solve the job shop scheduling problem (JSSP). Although this JSSP is widely accepted as a computationally intractable NP-hard problem in combinatorial optimization, its solution is essential in manufacturing. This study proposes performance-driven meta-heuristic switching approaches that utilize the capabilities of multi-operator differential evolution (MODE) and particle swarm optimization (PSO) in a single algorithmic framework. The performance-driven switching mechanism is introduced to switch the population from an under-performing algorithm to other possibilities. A mixed selection strategy is employed to ensure the diversity and quality of the initial population, whereas a diversity check mechanism maintains population diversity over the generations. Moreover, a Tabu search (TS) inspired local search technique is implemented to enhance the proposed algorithm’s exploitation capability, avoiding being trapped in the local optima. Finally, this study presents two mixed population structure-based hybrid evolutionary algorithms (HEAs), such as a predictive sequence HEA (sHEA) and a random sequence HEA (rHEA), and one bi-population inspired HEA, called bHEA. The comparative impacts of these varied population structure-based approaches are assessed by solving 5 categories of the standard JSSP instances (i.e., FT, LA, ORB, ABZ and TA). The performance of these hybridized approaches (i.e., sHEA, rHEA and bHEA) is compared and contrasted with its constituent algorithms (MODE, PSO and TS) to validate the hybridization’s effectiveness. The statistical analysis shows that sHEA ranked first with mean value 1.84 compared to rHEA (1.96) and bHEA (2.21). Moreover, the proposed sHEA is compared with 26 existing algorithms and ranked first with a mean value 5.09 compared to the near-best algorithms. Thus, the simulation results and statistical analysis prove the supremacy of the sHEA.

Suggested Citation

  • Shahed Mahmud & Ripon K. Chakrabortty & Alireza Abbasi & Michael J. Ryan, 2022. "Switching strategy-based hybrid evolutionary algorithms for job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1939-1966, October.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01940-1
    DOI: 10.1007/s10845-022-01940-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01940-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01940-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shimpi Singh Jadon & Jagdish Chand Bansal & Ritu Tiwari & Harish Sharma, 2018. "Artificial bee colony algorithm with global and local neighborhoods," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 589-601, June.
    2. Zhang, Rui & Song, Shiji & Wu, Cheng, 2013. "A hybrid artificial bee colony algorithm for the job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 167-178.
    3. Thi-Kien Dao & Tien-Szu Pan & Trong-The Nguyen & Jeng-Shyang Pan, 2018. "Parallel bat algorithm for optimizing makespan in job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 451-462, February.
    4. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    5. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    6. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    7. Fuqing Zhao & Zhongshi Shao & Junbiao Wang & Chuck Zhang, 2016. "A hybrid differential evolution and estimation of distribution algorithm based on neighbourhood search for job shop scheduling problems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1039-1060, February.
    8. David Applegate & William Cook, 1991. "A Computational Study of the Job-Shop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 3(2), pages 149-156, May.
    9. Ye Jin & Yuehong Sun & Hongjiao Ma, 2018. "A Developed Artificial Bee Colony Algorithm Based on Cloud Model," Mathematics, MDPI, vol. 6(4), pages 1-18, April.
    10. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
    11. Pezzella, Ferdinando & Merelli, Emanuela, 2000. "A tabu search method guided by shifting bottleneck for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 120(2), pages 297-310, January.
    12. George Steiner & Rui Zhang, 2011. "Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries," Annals of Operations Research, Springer, vol. 191(1), pages 171-181, November.
    13. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    14. Onwubolu, Godfrey & Davendra, Donald, 2006. "Scheduling flow shops using differential evolution algorithm," European Journal of Operational Research, Elsevier, vol. 171(2), pages 674-692, June.
    15. Sawik, Tadeusz, 2016. "Integrated supply, production and distribution scheduling under disruption risks," Omega, Elsevier, vol. 62(C), pages 131-144.
    16. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    17. Ahmadian, Mohammad Mahdi & Salehipour, Amir & Cheng, T.C.E., 2021. "A meta-heuristic to solve the just-in-time job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 288(1), pages 14-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    2. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    3. Tao Ren & Yan Zhang & Shuenn-Ren Cheng & Chin-Chia Wu & Meng Zhang & Bo-yu Chang & Xin-yue Wang & Peng Zhao, 2020. "Effective Heuristic Algorithms Solving the Jobshop Scheduling Problem with Release Dates," Mathematics, MDPI, vol. 8(8), pages 1-25, July.
    4. Diarmuid Grimes & Emmanuel Hebrard, 2015. "Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 268-284, May.
    5. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    6. Jelke J. Hoorn, 2018. "The Current state of bounds on benchmark instances of the job-shop scheduling problem," Journal of Scheduling, Springer, vol. 21(1), pages 127-128, February.
    7. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    8. Ying Sun & Jeng-Shyang Pan & Pei Hu & Shu-Chuan Chu, 2023. "Enhanced Equilibrium Optimizer algorithm applied in job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1639-1665, April.
    9. Michael Pinedo & Marcos Singer, 1999. "A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 1-17, February.
    10. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    11. Francis Sourd & Wim Nuijten, 2000. "Multiple-Machine Lower Bounds for Shop-Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 341-352, November.
    12. Yabo Luo, 2017. "Nested optimization method combining complex method and ant colony optimization to solve JSSP with complex associated processes," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1801-1815, December.
    13. Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.
    14. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    15. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
    16. Carlos Mencía & María Sierra & Ramiro Varela, 2013. "Depth-first heuristic search for the job shop scheduling problem," Annals of Operations Research, Springer, vol. 206(1), pages 265-296, July.
    17. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    18. S. David Wu & Eui-Seok Byeon & Robert H. Storer, 1999. "A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness," Operations Research, INFORMS, vol. 47(1), pages 113-124, February.
    19. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    20. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:7:d:10.1007_s10845-022-01940-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.