IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49182-4.html
   My bibliography  Save this article

The SpinBus architecture for scaling spin qubits with electron shuttling

Author

Listed:
  • Matthias Künne

    (Forschungszentrum Jülich GmbH and RWTH Aachen University)

  • Alexander Willmes

    (Forschungszentrum Jülich GmbH and RWTH Aachen University)

  • Max Oberländer

    (Forschungszentrum Jülich GmbH and RWTH Aachen University)

  • Christian Gorjaew

    (Forschungszentrum Jülich GmbH and RWTH Aachen University)

  • Julian D. Teske

    (Forschungszentrum Jülich GmbH and RWTH Aachen University)

  • Harsh Bhardwaj

    (Forschungszentrum Jülich GmbH and RWTH Aachen University)

  • Max Beer

    (Forschungszentrum Jülich GmbH and RWTH Aachen University)

  • Eugen Kammerloher

    (Forschungszentrum Jülich GmbH and RWTH Aachen University)

  • René Otten

    (Forschungszentrum Jülich GmbH and RWTH Aachen University
    ARQUE Systems GmbH)

  • Inga Seidler

    (Forschungszentrum Jülich GmbH and RWTH Aachen University)

  • Ran Xue

    (Forschungszentrum Jülich GmbH and RWTH Aachen University)

  • Lars R. Schreiber

    (Forschungszentrum Jülich GmbH and RWTH Aachen University
    ARQUE Systems GmbH)

  • Hendrik Bluhm

    (Forschungszentrum Jülich GmbH and RWTH Aachen University
    ARQUE Systems GmbH)

Abstract

Quantum processor architectures must enable scaling to large qubit numbers while providing two-dimensional qubit connectivity and exquisite operation fidelities. For microwave-controlled semiconductor spin qubits, dense arrays have made considerable progress, but are still limited in size by wiring fan-out and exhibit significant crosstalk between qubits. To overcome these limitations, we introduce the SpinBus architecture, which uses electron shuttling to connect qubits and features low operating frequencies and enhanced qubit coherence. Device simulations for all relevant operations in the Si/SiGe platform validate the feasibility with established semiconductor patterning technology and operation fidelities exceeding 99.9%. Control using room temperature instruments can plausibly support at least 144 qubits, but much larger numbers are conceivable with cryogenic control circuits. Building on the theoretical feasibility of high-fidelity spin-coherent electron shuttling as key enabling factor, the SpinBus architecture may be the basis for a spin-based quantum processor that meets the scalability requirements for practical quantum computing.

Suggested Citation

  • Matthias Künne & Alexander Willmes & Max Oberländer & Christian Gorjaew & Julian D. Teske & Harsh Bhardwaj & Max Beer & Eugen Kammerloher & René Otten & Inga Seidler & Ran Xue & Lars R. Schreiber & He, 2024. "The SpinBus architecture for scaling spin qubits with electron shuttling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49182-4
    DOI: 10.1038/s41467-024-49182-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49182-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49182-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Earl T. Campbell & Barbara M. Terhal & Christophe Vuillot, 2017. "Roads towards fault-tolerant universal quantum computation," Nature, Nature, vol. 549(7671), pages 172-179, September.
    2. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "Fast universal quantum gate above the fault-tolerance threshold in silicon," Nature, Nature, vol. 601(7893), pages 338-342, January.
    3. Xiao Xue & Maximilian Russ & Nodar Samkharadze & Brennan Undseth & Amir Sammak & Giordano Scappucci & Lieven M. K. Vandersypen, 2022. "Quantum logic with spin qubits crossing the surface code threshold," Nature, Nature, vol. 601(7893), pages 343-347, January.
    4. H. Flentje & P.-A. Mortemousque & R. Thalineau & A. Ludwig & A. D. Wieck & C. Bäuerle & T. Meunier, 2017. "Coherent long-distance displacement of individual electron spins," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    5. T. F. Watson & S. G. J. Philips & E. Kawakami & D. R. Ward & P. Scarlino & M. Veldhorst & D. E. Savage & M. G. Lagally & Mark Friesen & S. N. Coppersmith & M. A. Eriksson & L. M. K. Vandersypen, 2018. "A programmable two-qubit quantum processor in silicon," Nature, Nature, vol. 555(7698), pages 633-637, March.
    6. L. Petit & H. G. J. Eenink & M. Russ & W. I. L. Lawrie & N. W. Hendrickx & S. G. J. Philips & J. S. Clarke & L. M. K. Vandersypen & M. Veldhorst, 2020. "Universal quantum logic in hot silicon qubits," Nature, Nature, vol. 580(7803), pages 355-359, April.
    7. M. Veldhorst & H. G. J. Eenink & C. H. Yang & A. S. Dzurak, 2017. "Silicon CMOS architecture for a spin-based quantum computer," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    8. Kenta Takeda & Akito Noiri & Takashi Nakajima & Takashi Kobayashi & Seigo Tarucha, 2022. "Quantum error correction with silicon spin qubits," Nature, Nature, vol. 608(7924), pages 682-686, August.
    9. Aaron J. Weinstein & Matthew D. Reed & Aaron M. Jones & Reed W. Andrews & David Barnes & Jacob Z. Blumoff & Larken E. Euliss & Kevin Eng & Bryan H. Fong & Sieu D. Ha & Daniel R. Hulbert & Clayton A. C, 2023. "Universal logic with encoded spin qubits in silicon," Nature, Nature, vol. 615(7954), pages 817-822, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Floor Riggelen-Doelman & Chien-An Wang & Sander L. Snoo & William I. L. Lawrie & Nico W. Hendrickx & Maximilian Rimbach-Russ & Amir Sammak & Giordano Scappucci & Corentin Déprez & Menno Veldhorst, 2024. "Coherent spin qubit shuttling through germanium quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Brian Paquelet Wuetz & Merritt P. Losert & Sebastian Koelling & Lucas E. A. Stehouwer & Anne-Marije J. Zwerver & Stephan G. J. Philips & Mateusz T. Mądzik & Xiao Xue & Guoji Zheng & Mario Lodari & Ser, 2022. "Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Tom Struck & Mats Volmer & Lino Visser & Tobias Offermann & Ran Xue & Jhih-Sian Tu & Stefan Trellenkamp & Łukasz Cywiński & Hendrik Bluhm & Lars R. Schreiber, 2024. "Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Kosuke Noro & Yusuke Kozuka & Kazuma Matsumura & Takeshi Kumasaka & Yoshihiro Fujiwara & Atsushi Tsukazaki & Masashi Kawasaki & Tomohiro Otsuka, 2024. "Parity-independent Kondo effect of correlated electrons in electrostatically defined ZnO quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Ingvild Hansen & Amanda E. Seedhouse & Santiago Serrano & Andreas Nickl & MengKe Feng & Jonathan Y. Huang & Tuomo Tanttu & Nard Dumoulin Stuyck & Wee Han Lim & Fay E. Hudson & Kohei M. Itoh & Andre Sa, 2024. "Entangling gates on degenerate spin qubits dressed by a global field," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    10. Ran Xue & Max Beer & Inga Seidler & Simon Humpohl & Jhih-Sian Tu & Stefan Trellenkamp & Tom Struck & Hendrik Bluhm & Lars R. Schreiber, 2024. "Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Jesús D. Cifuentes & Tuomo Tanttu & Will Gilbert & Jonathan Y. Huang & Ensar Vahapoglu & Ross C. C. Leon & Santiago Serrano & Dennis Otter & Daniel Dunmore & Philip Y. Mai & Frédéric Schlattner & Meng, 2024. "Bounds to electron spin qubit variability for scalable CMOS architectures," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Yahong Chai & Yuhan Liang & Cancheng Xiao & Yue Wang & Bo Li & Dingsong Jiang & Pratap Pal & Yongjian Tang & Hetian Chen & Yuejie Zhang & Hao Bai & Teng Xu & Wanjun Jiang & Witold Skowroński & Qinghua, 2024. "Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Roman M. Wyss & Günter Kewes & Pietro Marabotti & Stefan M. Koepfli & Karl-Philipp Schlichting & Markus Parzefall & Eric Bonvin & Martin F. Sarott & Morgan Trassin & Maximilian Oezkent & Chen-Hsun Lu , 2024. "Bulk-suppressed and surface-sensitive Raman scattering by transferable plasmonic membranes with irregular slot-shaped nanopores," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Thomas McJunkin & Benjamin Harpt & Yi Feng & Merritt P. Losert & Rajib Rahman & J. P. Dodson & M. A. Wolfe & D. E. Savage & M. G. Lagally & S. N. Coppersmith & Mark Friesen & Robert Joynt & M. A. Erik, 2022. "SiGe quantum wells with oscillating Ge concentrations for quantum dot qubits," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Jie Zhang & Linshan Liu & Chaofeng Zheng & Wang Li & Chunru Wang & Taishan Wang, 2023. "Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. L. Banszerus & K. Hecker & S. Möller & E. Icking & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2022. "Spin relaxation in a single-electron graphene quantum dot," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    19. Shayan Majidy, 2024. "Noncommuting charges can remove non-stationary quantum many-body dynamics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    20. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49182-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.