IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55077-1.html
   My bibliography  Save this article

Cryogenic III-V and Nb electronics integrated on silicon for large-scale quantum computing platforms

Author

Listed:
  • Jaeyong Jeong

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Seong Kwang Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Yoon-Je Suh

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Jisung Lee

    (Korea Basic Science Institute (KBSI))

  • Joonyoung Choi

    (Kyungpook National University (KNU))

  • Joon Pyo Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Bong Ho Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Juhyuk Park

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Joonsup Shim

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Nahyun Rheem

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Chan Jik Lee

    (Korea Advanced Institute of Science and Technology (KAIST))

  • Younjung Jo

    (Kyungpook National University (KNU))

  • Dae-Myeong Geum

    (Inha University)

  • Seung-Young Park

    (Korea Basic Science Institute (KBSI))

  • Jongmin Kim

    (Korea Advanced Nano Fab Center (KANC))

  • Sanghyeon Kim

    (Korea Advanced Institute of Science and Technology (KAIST))

Abstract

Quantum computers now encounter the significant challenge of scalability, similar to the issue that classical computing faced previously. Recent results in high-fidelity spin qubits manufactured with a Si CMOS technology, along with demonstrations that cryogenic CMOS-based control/readout electronics can be integrated into the same chip or die, opens up an opportunity to break out the challenges of qubit size, I/O, and integrability. However, the power consumption of cryogenic CMOS-based control/readout electronics cannot support thousands or millions of qubits. Here, we show that III–V two-dimensional electron gas and Nb superconductor-based cryogenic electronics can be integrated with Si and operate at extremely low power levels, enabling the control and readout for millions of qubits. Our devices offer a unity gain cutoff frequency of 601 GHz, a unity power gain cutoff frequency of 593 GHz, and a low noise indication factor $$\left(\sqrt{{I}_{{{\rm{D}}}}}\, {g}_{{{{\rm{m}}}}}^{-1}\right)$$ I D g m − 1 of $$0.21\sqrt{{{{\rm{Vmm}}}}}\scriptstyle\sqrt{{S}^{-1}}$$ 0.21 Vmm S − 1 at 4 K using more than 10 times less power consumption than CMOS.

Suggested Citation

  • Jaeyong Jeong & Seong Kwang Kim & Yoon-Je Suh & Jisung Lee & Joonyoung Choi & Joon Pyo Kim & Bong Ho Kim & Juhyuk Park & Joonsup Shim & Nahyun Rheem & Chan Jik Lee & Younjung Jo & Dae-Myeong Geum & Se, 2024. "Cryogenic III-V and Nb electronics integrated on silicon for large-scale quantum computing platforms," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55077-1
    DOI: 10.1038/s41467-024-55077-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55077-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55077-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. H. Yang & R. C. C. Leon & J. C. C. Hwang & A. Saraiva & T. Tanttu & W. Huang & J. Camirand Lemyre & K. W. Chan & K. Y. Tan & F. E. Hudson & K. M. Itoh & A. Morello & M. Pioro-Ladrière & A. Laucht &, 2020. "Operation of a silicon quantum processor unit cell above one kelvin," Nature, Nature, vol. 580(7803), pages 350-354, April.
    2. Andrew J. Daley & Immanuel Bloch & Christian Kokail & Stuart Flannigan & Natalie Pearson & Matthias Troyer & Peter Zoller, 2022. "Practical quantum advantage in quantum simulation," Nature, Nature, vol. 607(7920), pages 667-676, July.
    3. L. Petit & H. G. J. Eenink & M. Russ & W. I. L. Lawrie & N. W. Hendrickx & S. G. J. Philips & J. S. Clarke & L. M. K. Vandersypen & M. Veldhorst, 2020. "Universal quantum logic in hot silicon qubits," Nature, Nature, vol. 580(7803), pages 355-359, April.
    4. M. Veldhorst & H. G. J. Eenink & C. H. Yang & A. S. Dzurak, 2017. "Silicon CMOS architecture for a spin-based quantum computer," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    5. Xiao Xue & Bishnu Patra & Jeroen P. G. Dijk & Nodar Samkharadze & Sushil Subramanian & Andrea Corna & Brian Paquelet Wuetz & Charles Jeon & Farhana Sheikh & Esdras Juarez-Hernandez & Brando Perez Espa, 2021. "CMOS-based cryogenic control of silicon quantum circuits," Nature, Nature, vol. 593(7858), pages 205-210, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Zenghui Bao & Yan Li & Zhiling Wang & Jiahui Wang & Jize Yang & Haonan Xiong & Yipu Song & Yukai Wu & Hongyi Zhang & Luming Duan, 2024. "A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Matthias Künne & Alexander Willmes & Max Oberländer & Christian Gorjaew & Julian D. Teske & Harsh Bhardwaj & Max Beer & Eugen Kammerloher & René Otten & Inga Seidler & Ran Xue & Lars R. Schreiber & He, 2024. "The SpinBus architecture for scaling spin qubits with electron shuttling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Andreas Gritsch & Alexander Ulanowski & Jakob Pforr & Andreas Reiserer, 2025. "Optical single-shot readout of spin qubits in silicon," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    5. Floor Riggelen-Doelman & Chien-An Wang & Sander L. Snoo & William I. L. Lawrie & Nico W. Hendrickx & Maximilian Rimbach-Russ & Amir Sammak & Giordano Scappucci & Corentin Déprez & Menno Veldhorst, 2024. "Coherent spin qubit shuttling through germanium quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Jesús D. Cifuentes & Tuomo Tanttu & Will Gilbert & Jonathan Y. Huang & Ensar Vahapoglu & Ross C. C. Leon & Santiago Serrano & Dennis Otter & Daniel Dunmore & Philip Y. Mai & Frédéric Schlattner & Meng, 2024. "Bounds to electron spin qubit variability for scalable CMOS architectures," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Ryan M. Jock & N. Tobias Jacobson & Martin Rudolph & Daniel R. Ward & Malcolm S. Carroll & Dwight R. Luhman, 2022. "A silicon singlet–triplet qubit driven by spin-valley coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    9. Brian Paquelet Wuetz & Merritt P. Losert & Sebastian Koelling & Lucas E. A. Stehouwer & Anne-Marije J. Zwerver & Stephan G. J. Philips & Mateusz T. Mądzik & Xiao Xue & Guoji Zheng & Mario Lodari & Ser, 2022. "Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Grigory E. Astrakharchik & Luis A. Peña Ardila & Krzysztof Jachymski & Antonio Negretti, 2023. "Many-body bound states and induced interactions of charged impurities in a bosonic bath," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Jaka Vodeb & Michele Diego & Yevhenii Vaskivskyi & Leonard Logaric & Yaroslav Gerasimenko & Viktor Kabanov & Benjamin Lipovsek & Marko Topic & Dragan Mihailovic, 2024. "Non-equilibrium quantum domain reconfiguration dynamics in a two-dimensional electronic crystal and a quantum annealer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    15. Alexander Gresch & Martin Kliesch, 2025. "Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    16. Pei-Yuan Wu & Wei-Qing Lee & Chang-Hua Liu & Chen-Bin Huang, 2024. "Coherent control of enhanced second-harmonic generation in a plasmonic nanocircuit using a transition metal dichalcogenide monolayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Jamal H. Busnaina & Zheng Shi & Alexander McDonald & Dmytro Dubyna & Ibrahim Nsanzineza & Jimmy S. C. Hung & C. W. Sandbo Chang & Aashish A. Clerk & Christopher M. Wilson, 2024. "Quantum simulation of the bosonic Kitaev chain," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Juhyeok Lee & Syed Zahid Hassan & Sangjun Lee & Hye Ryun Sim & Dae Sung Chung, 2022. "Azide-functionalized ligand enabling organic–inorganic hybrid dielectric for high-performance solution-processed oxide transistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Yu Liu & Yu-Ran Zhang & Yun-Hao Shi & Tao Liu & Congwei Lu & Yong-Yi Wang & Hao Li & Tian-Ming Li & Cheng-Lin Deng & Si-Yun Zhou & Tong Liu & Jia-Chi Zhang & Gui-Han Liang & Zheng-Yang Mei & Wei-Guo M, 2025. "Interplay between disorder and topology in Thouless pumping on a superconducting quantum processor," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    20. Evgeny Kozik, 2024. "Combinatorial summation of Feynman diagrams," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55077-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.