IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28519-x.html
   My bibliography  Save this article

Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations

Author

Listed:
  • Elliot J. Connors

    (University of Rochester)

  • J. Nelson

    (University of Rochester)

  • Lisa F. Edge

    (HRL Laboratories LLC)

  • John M. Nichol

    (University of Rochester)

Abstract

Electron spins in silicon quantum dots are promising qubits due to their long coherence times, scalable fabrication, and potential for all-electrical control. However, charge noise in the host semiconductor presents a major obstacle to achieving high-fidelity single- and two-qubit gates in these devices. In this work, we measure the charge-noise spectrum of a Si/SiGe singlet-triplet qubit over nearly 12 decades in frequency using a combination of methods, including dynamically-decoupled exchange oscillations with up to 512 π pulses during the qubit evolution. The charge noise is colored across the entire frequency range of our measurements, although the spectral exponent changes with frequency. Moreover, the charge-noise spectrum inferred from conductance measurements of a proximal sensor quantum dot agrees with that inferred from coherent oscillations of the singlet-triplet qubit, suggesting that simple transport measurements can accurately characterize the charge noise over a wide frequency range in Si/SiGe quantum dots.

Suggested Citation

  • Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28519-x
    DOI: 10.1038/s41467-022-28519-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28519-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28519-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y. He & S. K. Gorman & D. Keith & L. Kranz & J. G. Keizer & M. Y. Simmons, 2019. "A two-qubit gate between phosphorus donor electrons in silicon," Nature, Nature, vol. 571(7765), pages 371-375, July.
    2. L. Petit & H. G. J. Eenink & M. Russ & W. I. L. Lawrie & N. W. Hendrickx & S. G. J. Philips & J. S. Clarke & L. M. K. Vandersypen & M. Veldhorst, 2020. "Universal quantum logic in hot silicon qubits," Nature, Nature, vol. 580(7803), pages 355-359, April.
    3. Ryan M. Jock & N. Tobias Jacobson & Patrick Harvey-Collard & Andrew M. Mounce & Vanita Srinivasa & Dan R. Ward & John Anderson & Ron Manginell & Joel R. Wendt & Martin Rudolph & Tammy Pluym & John Kin, 2018. "A silicon metal-oxide-semiconductor electron spin-orbit qubit," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Patrick Harvey-Collard & N. Tobias Jacobson & Martin Rudolph & Jason Dominguez & Gregory A. Ten Eyck & Joel R. Wendt & Tammy Pluym & John King Gamble & Michael P. Lilly & Michel Pioro-Ladrière & Malco, 2017. "Coherent coupling between a quantum dot and a donor in silicon," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    5. M. Veldhorst & C. H. Yang & J. C. C. Hwang & W. Huang & J. P. Dehollain & J. T. Muhonen & S. Simmons & A. Laucht & F. E. Hudson & K. M. Itoh & A. Morello & A. S. Dzurak, 2015. "A two-qubit logic gate in silicon," Nature, Nature, vol. 526(7573), pages 410-414, October.
    6. T. F. Watson & S. G. J. Philips & E. Kawakami & D. R. Ward & P. Scarlino & M. Veldhorst & D. E. Savage & M. G. Lagally & Mark Friesen & S. N. Coppersmith & M. A. Eriksson & L. M. K. Vandersypen, 2018. "A programmable two-qubit quantum processor in silicon," Nature, Nature, vol. 555(7698), pages 633-637, March.
    7. Pascal Cerfontaine & Tim Botzem & Julian Ritzmann & Simon Sebastian Humpohl & Arne Ludwig & Dieter Schuh & Dominique Bougeard & Andreas D. Wieck & Hendrik Bluhm, 2020. "Closed-loop control of a GaAs-based singlet-triplet spin qubit with 99.5% gate fidelity and low leakage," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    8. Fabio Ansaloni & Anasua Chatterjee & Heorhii Bohuslavskyi & Benoit Bertrand & Louis Hutin & Maud Vinet & Ferdinand Kuemmeth, 2020. "Single-electron operations in a foundry-fabricated array of quantum dots," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holly G. Stemp & Serwan Asaad & Mark R. van Blankenstein & Arjen Vaartjes & Mark A. I. Johnson & Mateusz T. Mądzik & Amber J. A. Heskes & Hannes R. Firgau & Rocky Y. Su & Chih Hwan Yang & Arne Laucht , 2024. "Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. W. I. L. Lawrie & M. Rimbach-Russ & F. van Riggelen & N. W. Hendrickx & S. L. de Snoo & A. Sammak & G. Scappucci & J. Helsen & M. Veldhorst, 2023. "Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Ryan M. Jock & N. Tobias Jacobson & Martin Rudolph & Daniel R. Ward & Malcolm S. Carroll & Dwight R. Luhman, 2022. "A silicon singlet–triplet qubit driven by spin-valley coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Ingvild Hansen & Amanda E. Seedhouse & Santiago Serrano & Andreas Nickl & MengKe Feng & Jonathan Y. Huang & Tuomo Tanttu & Nard Dumoulin Stuyck & Wee Han Lim & Fay E. Hudson & Kohei M. Itoh & Andre Sa, 2024. "Entangling gates on degenerate spin qubits dressed by a global field," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Matthias Künne & Alexander Willmes & Max Oberländer & Christian Gorjaew & Julian D. Teske & Harsh Bhardwaj & Max Beer & Eugen Kammerloher & René Otten & Inga Seidler & Ran Xue & Lars R. Schreiber & He, 2024. "The SpinBus architecture for scaling spin qubits with electron shuttling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. L. Banszerus & K. Hecker & S. Möller & E. Icking & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2022. "Spin relaxation in a single-electron graphene quantum dot," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. S. D. Liles & D. J. Halverson & Z. Wang & A. Shamim & R. S. Eggli & I. K. Jin & J. Hillier & K. Kumar & I. Vorreiter & M. J. Rendell & J. Y. Huang & C. C. Escott & F. E. Hudson & W. H. Lim & D. Culcer, 2024. "A singlet-triplet hole-spin qubit in MOS silicon," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Thomas McJunkin & Benjamin Harpt & Yi Feng & Merritt P. Losert & Rajib Rahman & J. P. Dodson & M. A. Wolfe & D. E. Savage & M. G. Lagally & S. N. Coppersmith & Mark Friesen & Robert Joynt & M. A. Erik, 2022. "SiGe quantum wells with oscillating Ge concentrations for quantum dot qubits," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Floor Riggelen-Doelman & Chien-An Wang & Sander L. Snoo & William I. L. Lawrie & Nico W. Hendrickx & Maximilian Rimbach-Russ & Amir Sammak & Giordano Scappucci & Corentin Déprez & Menno Veldhorst, 2024. "Coherent spin qubit shuttling through germanium quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Tom Struck & Mats Volmer & Lino Visser & Tobias Offermann & Ran Xue & Jhih-Sian Tu & Stefan Trellenkamp & Łukasz Cywiński & Hendrik Bluhm & Lars R. Schreiber, 2024. "Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    15. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Robert Stockill & Moritz Forsch & Frederick Hijazi & Grégoire Beaudoin & Konstantinos Pantzas & Isabelle Sagnes & Rémy Braive & Simon Gröblacher, 2022. "Ultra-low-noise microwave to optics conversion in gallium phosphide," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Jesús D. Cifuentes & Tuomo Tanttu & Will Gilbert & Jonathan Y. Huang & Ensar Vahapoglu & Ross C. C. Leon & Santiago Serrano & Dennis Otter & Daniel Dunmore & Philip Y. Mai & Frédéric Schlattner & Meng, 2024. "Bounds to electron spin qubit variability for scalable CMOS architectures," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Yi Liu & Johan V. Knutsson & Nathaniel Wilson & Elliot Young & Sebastian Lehmann & Kimberly A. Dick & Chris J. Palmstrøm & Anders Mikkelsen & Rainer Timm, 2021. "Self-selective formation of ordered 1D and 2D GaBi structures on wurtzite GaAs nanowire surfaces," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    19. Brian Paquelet Wuetz & Merritt P. Losert & Sebastian Koelling & Lucas E. A. Stehouwer & Anne-Marije J. Zwerver & Stephan G. J. Philips & Mateusz T. Mądzik & Xiao Xue & Guoji Zheng & Mario Lodari & Ser, 2022. "Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Xiqiao Wang & Ehsan Khatami & Fan Fei & Jonathan Wyrick & Pradeep Namboodiri & Ranjit Kashid & Albert F. Rigosi & Garnett Bryant & Richard Silver, 2022. "Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28519-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.