IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51161-8.html
   My bibliography  Save this article

Microwave signal processing using an analog quantum reservoir computer

Author

Listed:
  • Alen Senanian

    (Cornell University
    Cornell University)

  • Sridhar Prabhu

    (Cornell University
    Cornell University)

  • Vladimir Kremenetski

    (Cornell University)

  • Saswata Roy

    (Cornell University
    Cornell University)

  • Yingkang Cao

    (University of Maryland
    University of Maryland)

  • Jeremy Kline

    (Cornell University
    Massachusetts Institute of Technology)

  • Tatsuhiro Onodera

    (Cornell University
    NTT Research, Inc.)

  • Logan G. Wright

    (Cornell University
    NTT Research, Inc.
    Yale University)

  • Xiaodi Wu

    (University of Maryland
    University of Maryland)

  • Valla Fatemi

    (Cornell University)

  • Peter L. McMahon

    (Cornell University
    Cornell University)

Abstract

Quantum reservoir computing (QRC) has been proposed as a paradigm for performing machine learning with quantum processors where the training takes place in the classical domain, avoiding the issue of barren plateaus in parameterized-circuit quantum neural networks. It is natural to consider using a quantum processor based on microwave superconducting circuits to classify microwave signals that are analog—continuous in time. However, while there have been theoretical proposals of analog QRC, to date QRC has been implemented using the circuit model—imposing a discretization of the incoming signal in time. In this paper we show how a quantum superconducting circuit comprising an oscillator coupled to a qubit can be used as an analog quantum reservoir for a variety of classification tasks, achieving high accuracy on all of them. Our work demonstrates processing of ultra-low-power microwave signals within our superconducting circuit, a step towards achieving a quantum sensing-computational advantage on impinging microwave signals.

Suggested Citation

  • Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51161-8
    DOI: 10.1038/s41467-024-51161-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51161-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51161-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    2. Jacob Biamonte & Peter Wittek & Nicola Pancotti & Patrick Rebentrost & Nathan Wiebe & Seth Lloyd, 2017. "Quantum machine learning," Nature, Nature, vol. 549(7671), pages 195-202, September.
    3. W. Wang & Z.-J. Chen & X. Liu & W. Cai & Y. Ma & X. Mu & X. Pan & Z. Hua & L. Hu & Y. Xu & H. Wang & Y. P. Song & X.-B. Zou & C.-L. Zou & L. Sun, 2022. "Quantum-enhanced radiometry via approximate quantum error correction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Earl T. Campbell & Barbara M. Terhal & Christophe Vuillot, 2017. "Roads towards fault-tolerant universal quantum computation," Nature, Nature, vol. 549(7671), pages 172-179, September.
    5. Andrew J. Daley & Immanuel Bloch & Christian Kokail & Stuart Flannigan & Natalie Pearson & Matthias Troyer & Peter Zoller, 2022. "Practical quantum advantage in quantum simulation," Nature, Nature, vol. 607(7920), pages 667-676, July.
    6. Daniel J. Gauthier & Erik Bollt & Aaron Griffith & Wendson A. S. Barbosa, 2021. "Next generation reservoir computing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Samson Wang & Enrico Fontana & M. Cerezo & Kunal Sharma & Akira Sone & Lukasz Cincio & Patrick J. Coles, 2021. "Noise-induced barren plateaus in variational quantum algorithms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. K. M. Backes & D. A. Palken & S. Al Kenany & B. M. Brubaker & S. B. Cahn & A. Droster & Gene C. Hilton & Sumita Ghosh & H. Jackson & S. K. Lamoreaux & A. F. Leder & K. W. Lehnert & S. M. Lewis & M. Ma, 2021. "A quantum enhanced search for dark matter axions," Nature, Nature, vol. 590(7845), pages 238-242, February.
    9. Jarrod R. McClean & Sergio Boixo & Vadim N. Smelyanskiy & Ryan Babbush & Hartmut Neven, 2018. "Barren plateaus in quantum neural network training landscapes," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elies Gil-Fuster & Jens Eisert & Carlos Bravo-Prieto, 2024. "Understanding quantum machine learning also requires rethinking generalization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Michael Ragone & Bojko N. Bakalov & Frédéric Sauvage & Alexander F. Kemper & Carlos Ortiz Marrero & Martín Larocca & M. Cerezo, 2024. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Matthias C. Caro & Hsin-Yuan Huang & M. Cerezo & Kunal Sharma & Andrew Sornborger & Lukasz Cincio & Patrick J. Coles, 2022. "Generalization in quantum machine learning from few training data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Sofiene Jerbi & Lukas J. Fiderer & Hendrik Poulsen Nautrup & Jonas M. Kübler & Hans J. Briegel & Vedran Dunjko, 2023. "Quantum machine learning beyond kernel methods," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Manuel S. Rudolph & Jacob Miller & Danial Motlagh & Jing Chen & Atithi Acharya & Alejandro Perdomo-Ortiz, 2023. "Synergistic pretraining of parametrized quantum circuits via tensor networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Bingzhi Zhang & Junyu Liu & Xiao-Chuan Wu & Liang Jiang & Quntao Zhuang, 2024. "Dynamical transition in controllable quantum neural networks with large depth," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    9. Ryan Snodgrass & Vincent Kotsubo & Scott Backhaus & Joel Ullom, 2024. "Dynamic acoustic optimization of pulse tube refrigerators for rapid cooldown," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Eric R. Anschuetz & Bobak T. Kiani, 2022. "Quantum variational algorithms are swamped with traps," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Enrico Fontana & Dylan Herman & Shouvanik Chakrabarti & Niraj Kumar & Romina Yalovetzky & Jamie Heredge & Shree Hari Sureshbabu & Marco Pistoia, 2024. "Characterizing barren plateaus in quantum ansätze with the adjoint representation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Wei-Ming Li & Shi-Ju Ran, 2022. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    13. Johannes Herrmann & Sergi Masot Llima & Ants Remm & Petr Zapletal & Nathan A. McMahon & Colin Scarato & François Swiadek & Christian Kraglund Andersen & Christoph Hellings & Sebastian Krinner & Nathan, 2022. "Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Matthias C. Caro & Hsin-Yuan Huang & Nicholas Ezzell & Joe Gibbs & Andrew T. Sornborger & Lukasz Cincio & Patrick J. Coles & Zoë Holmes, 2023. "Out-of-distribution generalization for learning quantum dynamics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Jing, Hang & Li, Yan & Brandsema, Matthew J. & Chen, Yousu & Yue, Meng, 2024. "HHL algorithm with mapping function and enhanced sampling for model predictive control in microgrids," Applied Energy, Elsevier, vol. 361(C).
    16. J. Helsen & M. Ioannou & J. Kitzinger & E. Onorati & A. H. Werner & J. Eisert & I. Roth, 2023. "Shadow estimation of gate-set properties from random sequences," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    18. El Amine Cherrat & Snehal Raj & Iordanis Kerenidis & Abhishek Shekhar & Ben Wood & Jon Dee & Shouvanik Chakrabarti & Richard Chen & Dylan Herman & Shaohan Hu & Pierre Minssen & Ruslan Shaydulin & Yue , 2023. "Quantum Deep Hedging," Papers 2303.16585, arXiv.org, revised Nov 2023.
    19. Sofiene Jerbi & Casper Gyurik & Simon C. Marshall & Riccardo Molteni & Vedran Dunjko, 2024. "Shadows of quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    20. Huang, Chenyi & Zhang, Shibin & Chang, Yan & Yan, Lily, 2024. "Quantum metric learning with fuzzy-informed learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51161-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.