IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36951-w.html
   My bibliography  Save this article

Reducing charge noise in quantum dots by using thin silicon quantum wells

Author

Listed:
  • Brian Paquelet Wuetz

    (Delft University of Technology)

  • Davide Degli Esposti

    (Delft University of Technology)

  • Anne-Marije J. Zwerver

    (Delft University of Technology)

  • Sergey V. Amitonov

    (Delft University of Technology
    QuTech and Netherlands Organisation for Applied Scientific Research (TNO))

  • Marc Botifoll

    (Campus UAB)

  • Jordi Arbiol

    (Campus UAB
    ICREA)

  • Amir Sammak

    (QuTech and Netherlands Organisation for Applied Scientific Research (TNO))

  • Lieven M. K. Vandersypen

    (Delft University of Technology)

  • Maximilian Russ

    (Delft University of Technology)

  • Giordano Scappucci

    (Delft University of Technology)

Abstract

Charge noise in the host semiconductor degrades the performance of spin-qubits and poses an obstacle to control large quantum processors. However, it is challenging to engineer the heterogeneous material stack of gate-defined quantum dots to improve charge noise systematically. Here, we address the semiconductor-dielectric interface and the buried quantum well of a 28Si/SiGe heterostructure and show the connection between charge noise, measured locally in quantum dots, and global disorder in the host semiconductor, measured with macroscopic Hall bars. In 5 nm thick 28Si quantum wells, we find that improvements in the scattering properties and uniformity of the two-dimensional electron gas over a 100 mm wafer correspond to a significant reduction in charge noise, with a minimum value of 0.29 ± 0.02 μeV/Hz½ at 1 Hz averaged over several quantum dots. We extrapolate the measured charge noise to simulated dephasing times to CZ-gate fidelities that improve nearly one order of magnitude. These results point to a clean and quiet crystalline environment for integrating long-lived and high-fidelity spin qubits into a larger system.

Suggested Citation

  • Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36951-w
    DOI: 10.1038/s41467-023-36951-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36951-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36951-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao Xue & Maximilian Russ & Nodar Samkharadze & Brennan Undseth & Amir Sammak & Giordano Scappucci & Lieven M. K. Vandersypen, 2022. "Quantum logic with spin qubits crossing the surface code threshold," Nature, Nature, vol. 601(7893), pages 343-347, January.
    2. J. Yoneda & W. Huang & M. Feng & C. H. Yang & K. W. Chan & T. Tanttu & W. Gilbert & R. C. C. Leon & F. E. Hudson & K. M. Itoh & A. Morello & S. D. Bartlett & A. Laucht & A. Saraiva & A. S. Dzurak, 2021. "Coherent spin qubit transport in silicon," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. F. Borjans & X. G. Croot & X. Mi & M. J. Gullans & J. R. Petta, 2020. "Resonant microwave-mediated interactions between distant electron spins," Nature, Nature, vol. 577(7789), pages 195-198, January.
    4. Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "Fast universal quantum gate above the fault-tolerance threshold in silicon," Nature, Nature, vol. 601(7893), pages 338-342, January.
    6. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. M. Veldhorst & C. H. Yang & J. C. C. Hwang & W. Huang & J. P. Dehollain & J. T. Muhonen & S. Simmons & A. Laucht & F. E. Hudson & K. M. Itoh & A. Morello & A. S. Dzurak, 2015. "A two-qubit logic gate in silicon," Nature, Nature, vol. 526(7573), pages 410-414, October.
    8. T. F. Watson & S. G. J. Philips & E. Kawakami & D. R. Ward & P. Scarlino & M. Veldhorst & D. E. Savage & M. G. Lagally & Mark Friesen & S. N. Coppersmith & M. A. Eriksson & L. M. K. Vandersypen, 2018. "A programmable two-qubit quantum processor in silicon," Nature, Nature, vol. 555(7698), pages 633-637, March.
    9. Xiao Xue & Bishnu Patra & Jeroen P. G. Dijk & Nodar Samkharadze & Sushil Subramanian & Andrea Corna & Brian Paquelet Wuetz & Charles Jeon & Farhana Sheikh & Esdras Juarez-Hernandez & Brando Perez Espa, 2021. "CMOS-based cryogenic control of silicon quantum circuits," Nature, Nature, vol. 593(7858), pages 205-210, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Floor Riggelen-Doelman & Chien-An Wang & Sander L. Snoo & William I. L. Lawrie & Nico W. Hendrickx & Maximilian Rimbach-Russ & Amir Sammak & Giordano Scappucci & Corentin Déprez & Menno Veldhorst, 2024. "Coherent spin qubit shuttling through germanium quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Brian Paquelet Wuetz & Merritt P. Losert & Sebastian Koelling & Lucas E. A. Stehouwer & Anne-Marije J. Zwerver & Stephan G. J. Philips & Mateusz T. Mądzik & Xiao Xue & Guoji Zheng & Mario Lodari & Ser, 2022. "Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Matthias Künne & Alexander Willmes & Max Oberländer & Christian Gorjaew & Julian D. Teske & Harsh Bhardwaj & Max Beer & Eugen Kammerloher & René Otten & Inga Seidler & Ran Xue & Lars R. Schreiber & He, 2024. "The SpinBus architecture for scaling spin qubits with electron shuttling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Tom Struck & Mats Volmer & Lino Visser & Tobias Offermann & Ran Xue & Jhih-Sian Tu & Stefan Trellenkamp & Łukasz Cywiński & Hendrik Bluhm & Lars R. Schreiber, 2024. "Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Ran Xue & Max Beer & Inga Seidler & Simon Humpohl & Jhih-Sian Tu & Stefan Trellenkamp & Tom Struck & Hendrik Bluhm & Lars R. Schreiber, 2024. "Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. C. G. L. Bøttcher & S. P. Harvey & S. Fallahi & G. C. Gardner & M. J. Manfra & U. Vool & S. D. Bartlett & A. Yacoby, 2022. "Parametric longitudinal coupling between a high-impedance superconducting resonator and a semiconductor quantum dot singlet-triplet spin qubit," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Ingvild Hansen & Amanda E. Seedhouse & Santiago Serrano & Andreas Nickl & MengKe Feng & Jonathan Y. Huang & Tuomo Tanttu & Nard Dumoulin Stuyck & Wee Han Lim & Fay E. Hudson & Kohei M. Itoh & Andre Sa, 2024. "Entangling gates on degenerate spin qubits dressed by a global field," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    11. Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. L. Banszerus & K. Hecker & S. Möller & E. Icking & K. Watanabe & T. Taniguchi & C. Volk & C. Stampfer, 2022. "Spin relaxation in a single-electron graphene quantum dot," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    13. Roman M. Wyss & Günter Kewes & Pietro Marabotti & Stefan M. Koepfli & Karl-Philipp Schlichting & Markus Parzefall & Eric Bonvin & Martin F. Sarott & Morgan Trassin & Maximilian Oezkent & Chen-Hsun Lu , 2024. "Bulk-suppressed and surface-sensitive Raman scattering by transferable plasmonic membranes with irregular slot-shaped nanopores," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Thomas McJunkin & Benjamin Harpt & Yi Feng & Merritt P. Losert & Rajib Rahman & J. P. Dodson & M. A. Wolfe & D. E. Savage & M. G. Lagally & S. N. Coppersmith & Mark Friesen & Robert Joynt & M. A. Erik, 2022. "SiGe quantum wells with oscillating Ge concentrations for quantum dot qubits," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Yulin Chi & Jieshan Huang & Zhanchuan Zhang & Jun Mao & Zinan Zhou & Xiaojiong Chen & Chonghao Zhai & Jueming Bao & Tianxiang Dai & Huihong Yuan & Ming Zhang & Daoxin Dai & Bo Tang & Yan Yang & Zhihua, 2022. "A programmable qudit-based quantum processor," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Zenghui Bao & Yan Li & Zhiling Wang & Jiahui Wang & Jize Yang & Haonan Xiong & Yipu Song & Yukai Wu & Hongyi Zhang & Luming Duan, 2024. "A cryogenic on-chip microwave pulse generator for large-scale superconducting quantum computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Wei, Dongmei & Liu, Hailing & Li, Yongmei & Wan, Linchun & Qin, Sujuan & Wen, Qiaoyan & Gao, Fei, 2024. "Non-Markovian dynamics of time-fractional open quantum systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    19. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Robert Stockill & Moritz Forsch & Frederick Hijazi & Grégoire Beaudoin & Konstantinos Pantzas & Isabelle Sagnes & Rémy Braive & Simon Gröblacher, 2022. "Ultra-low-noise microwave to optics conversion in gallium phosphide," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36951-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.