IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48557-x.html
   My bibliography  Save this article

Bounds to electron spin qubit variability for scalable CMOS architectures

Author

Listed:
  • Jesús D. Cifuentes

    (University of New South Wales)

  • Tuomo Tanttu

    (University of New South Wales
    Diraq)

  • Will Gilbert

    (University of New South Wales
    Diraq)

  • Jonathan Y. Huang

    (University of New South Wales)

  • Ensar Vahapoglu

    (University of New South Wales
    Diraq)

  • Ross C. C. Leon

    (University of New South Wales)

  • Santiago Serrano

    (University of New South Wales)

  • Dennis Otter

    (University of New South Wales)

  • Daniel Dunmore

    (University of New South Wales)

  • Philip Y. Mai

    (University of New South Wales)

  • Frédéric Schlattner

    (University of New South Wales
    ETH Zurich)

  • MengKe Feng

    (University of New South Wales)

  • Kohei Itoh

    (Keio University)

  • Nikolay Abrosimov

    (Leibniz-Institut für Kristallzüchtung)

  • Hans-Joachim Pohl

    (VITCON Projectconsult GmbH)

  • Michael Thewalt

    (Simon Fraser University)

  • Arne Laucht

    (University of New South Wales
    Diraq)

  • Chih Hwan Yang

    (University of New South Wales
    Diraq)

  • Christopher C. Escott

    (University of New South Wales
    Diraq)

  • Wee Han Lim

    (University of New South Wales
    Diraq)

  • Fay E. Hudson

    (University of New South Wales
    Diraq)

  • Rajib Rahman

    (University of New South Wales)

  • Andrew S. Dzurak

    (University of New South Wales
    Diraq)

  • Andre Saraiva

    (University of New South Wales
    Diraq)

Abstract

Spins of electrons in silicon MOS quantum dots combine exquisite quantum properties and scalable fabrication. In the age of quantum technology, however, the metrics that crowned Si/SiO2 as the microelectronics standard need to be reassessed with respect to their impact upon qubit performance. We chart spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO2 interface, compiling experiments across 12 devices, and develop theoretical tools to analyse these results. Atomistic tight binding and path integral Monte Carlo methods are adapted to describe fluctuations in devices with millions of atoms by directly analysing their wavefunctions and electron paths instead of their energy spectra. We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling. These variabilities are found to be bounded, and they lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.

Suggested Citation

  • Jesús D. Cifuentes & Tuomo Tanttu & Will Gilbert & Jonathan Y. Huang & Ensar Vahapoglu & Ross C. C. Leon & Santiago Serrano & Dennis Otter & Daniel Dunmore & Philip Y. Mai & Frédéric Schlattner & Meng, 2024. "Bounds to electron spin qubit variability for scalable CMOS architectures," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48557-x
    DOI: 10.1038/s41467-024-48557-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48557-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48557-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Veldhorst & H. G. J. Eenink & C. H. Yang & A. S. Dzurak, 2017. "Silicon CMOS architecture for a spin-based quantum computer," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    2. C. H. Yang & A. Rossi & R. Ruskov & N. S. Lai & F. A. Mohiyaddin & S. Lee & C. Tahan & G. Klimeck & A. Morello & A. S. Dzurak, 2013. "Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
    3. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "Fast universal quantum gate above the fault-tolerance threshold in silicon," Nature, Nature, vol. 601(7893), pages 338-342, January.
    4. C. H. Yang & R. C. C. Leon & J. C. C. Hwang & A. Saraiva & T. Tanttu & W. Huang & J. Camirand Lemyre & K. W. Chan & K. Y. Tan & F. E. Hudson & K. M. Itoh & A. Morello & M. Pioro-Ladrière & A. Laucht &, 2020. "Operation of a silicon quantum processor unit cell above one kelvin," Nature, Nature, vol. 580(7803), pages 350-354, April.
    5. Ryan M. Jock & N. Tobias Jacobson & Patrick Harvey-Collard & Andrew M. Mounce & Vanita Srinivasa & Dan R. Ward & John Anderson & Ron Manginell & Joel R. Wendt & Martin Rudolph & Tammy Pluym & John Kin, 2018. "A silicon metal-oxide-semiconductor electron spin-orbit qubit," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    6. R. Maurand & X. Jehl & D. Kotekar-Patil & A. Corna & H. Bohuslavskyi & R. Laviéville & L. Hutin & S. Barraud & M. Vinet & M. Sanquer & S. De Franceschi, 2016. "A CMOS silicon spin qubit," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Künne & Alexander Willmes & Max Oberländer & Christian Gorjaew & Julian D. Teske & Harsh Bhardwaj & Max Beer & Eugen Kammerloher & René Otten & Inga Seidler & Ran Xue & Lars R. Schreiber & He, 2024. "The SpinBus architecture for scaling spin qubits with electron shuttling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Floor Riggelen-Doelman & Chien-An Wang & Sander L. Snoo & William I. L. Lawrie & Nico W. Hendrickx & Maximilian Rimbach-Russ & Amir Sammak & Giordano Scappucci & Corentin Déprez & Menno Veldhorst, 2024. "Coherent spin qubit shuttling through germanium quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Akito Noiri & Kenta Takeda & Takashi Nakajima & Takashi Kobayashi & Amir Sammak & Giordano Scappucci & Seigo Tarucha, 2022. "A shuttling-based two-qubit logic gate for linking distant silicon quantum processors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Ryan M. Jock & N. Tobias Jacobson & Martin Rudolph & Daniel R. Ward & Malcolm S. Carroll & Dwight R. Luhman, 2022. "A silicon singlet–triplet qubit driven by spin-valley coupling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Brian Paquelet Wuetz & Merritt P. Losert & Sebastian Koelling & Lucas E. A. Stehouwer & Anne-Marije J. Zwerver & Stephan G. J. Philips & Mateusz T. Mądzik & Xiao Xue & Guoji Zheng & Mario Lodari & Ser, 2022. "Atomic fluctuations lifting the energy degeneracy in Si/SiGe quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Elliot J. Connors & J. Nelson & Lisa F. Edge & John M. Nichol, 2022. "Charge-noise spectroscopy of Si/SiGe quantum dots via dynamically-decoupled exchange oscillations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Brian Paquelet Wuetz & Davide Degli Esposti & Anne-Marije J. Zwerver & Sergey V. Amitonov & Marc Botifoll & Jordi Arbiol & Amir Sammak & Lieven M. K. Vandersypen & Maximilian Russ & Giordano Scappucci, 2023. "Reducing charge noise in quantum dots by using thin silicon quantum wells," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Tom Struck & Mats Volmer & Lino Visser & Tobias Offermann & Ran Xue & Jhih-Sian Tu & Stefan Trellenkamp & Łukasz Cywiński & Hendrik Bluhm & Lars R. Schreiber, 2024. "Spin-EPR-pair separation by conveyor-mode single electron shuttling in Si/SiGe," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    10. Ran Xue & Max Beer & Inga Seidler & Simon Humpohl & Jhih-Sian Tu & Stefan Trellenkamp & Tom Struck & Hendrik Bluhm & Lars R. Schreiber, 2024. "Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Fabrizio Berritta & Torbjørn Rasmussen & Jan A. Krzywda & Joost Heijden & Federico Fedele & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & Evert Nieuwenburg & Jeroen Danon & Anasua Chatterj, 2024. "Real-time two-axis control of a spin qubit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48557-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.