IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43923-7.html
   My bibliography  Save this article

Ultra-narrow inhomogeneous spectral distribution of telecom-wavelength vanadium centres in isotopically-enriched silicon carbide

Author

Listed:
  • Pasquale Cilibrizzi

    (SUPA, Heriot-Watt University)

  • Muhammad Junaid Arshad

    (SUPA, Heriot-Watt University)

  • Benedikt Tissot

    (University of Konstanz)

  • Nguyen Tien Son

    (Linköping University)

  • Ivan G. Ivanov

    (Linköping University)

  • Thomas Astner

    (Austrian Academy of Sciences)

  • Philipp Koller

    (Austrian Academy of Sciences)

  • Misagh Ghezellou

    (Linköping University)

  • Jawad Ul-Hassan

    (Linköping University)

  • Daniel White

    (SUPA, Heriot-Watt University)

  • Christiaan Bekker

    (SUPA, Heriot-Watt University)

  • Guido Burkard

    (University of Konstanz)

  • Michael Trupke

    (Austrian Academy of Sciences)

  • Cristian Bonato

    (SUPA, Heriot-Watt University)

Abstract

Spin-active quantum emitters have emerged as a leading platform for quantum technologies. However, one of their major limitations is the large spread in optical emission frequencies, which typically extends over tens of GHz. Here, we investigate single V4+ vanadium centres in 4H-SiC, which feature telecom-wavelength emission and a coherent S = 1/2 spin state. We perform spectroscopy on single emitters and report the observation of spin-dependent optical transitions, a key requirement for spin-photon interfaces. By engineering the isotopic composition of the SiC matrix, we reduce the inhomogeneous spectral distribution of different emitters down to 100 MHz, significantly smaller than any other single quantum emitter. Additionally, we tailor the dopant concentration to stabilise the telecom-wavelength V4+ charge state, thereby extending its lifetime by at least two orders of magnitude. These results bolster the prospects for single V emitters in SiC as material nodes in scalable telecom quantum networks.

Suggested Citation

  • Pasquale Cilibrizzi & Muhammad Junaid Arshad & Benedikt Tissot & Nguyen Tien Son & Ivan G. Ivanov & Thomas Astner & Philipp Koller & Misagh Ghezellou & Jawad Ul-Hassan & Daniel White & Christiaan Bekk, 2023. "Ultra-narrow inhomogeneous spectral distribution of telecom-wavelength vanadium centres in isotopically-enriched silicon carbide," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43923-7
    DOI: 10.1038/s41467-023-43923-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43923-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43923-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diana Serrano & Senthil Kumar Kuppusamy & Benoît Heinrich & Olaf Fuhr & David Hunger & Mario Ruben & Philippe Goldner, 2022. "Ultra-narrow optical linewidths in rare-earth molecular crystals," Nature, Nature, vol. 603(7900), pages 241-246, March.
    2. J. Cramer & N. Kalb & M. A. Rol & B. Hensen & M. S. Blok & M. Markham & D. J. Twitchen & R. Hanson & T. H. Taminiau, 2016. "Repeated quantum error correction on a continuously encoded qubit by real-time feedback," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    3. L.J. Rogers & K.D. Jahnke & T. Teraji & L. Marseglia & C. Müller & B. Naydenov & H. Schauffert & C. Kranz & J. Isoya & L.P. McGuinness & F. Jelezko, 2014. "Multiple intrinsically identical single-photon emitters in the solid state," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    4. Mouktik Raha & Songtao Chen & Christopher M. Phenicie & Salim Ourari & Alan M. Dibos & Jeff D. Thompson, 2020. "Optical quantum nondemolition measurement of a single rare earth ion qubit," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    5. Peter C. Humphreys & Norbert Kalb & Jaco P. J. Morits & Raymond N. Schouten & Raymond F. L. Vermeulen & Daniel J. Twitchen & Matthew Markham & Ronald Hanson, 2018. "Deterministic delivery of remote entanglement on a quantum network," Nature, Nature, vol. 558(7709), pages 268-273, June.
    6. Peter C. Humphreys & Norbert Kalb & Jaco P. J. Morits & Raymond N. Schouten & Raymond F. L. Vermeulen & Daniel J. Twitchen & Matthew Markham & Ronald Hanson, 2018. "Publisher Correction: Deterministic delivery of remote entanglement on a quantum network," Nature, Nature, vol. 562(7725), pages 2-2, October.
    7. Hannah L. Stern & Qiushi Gu & John Jarman & Simone Eizagirre Barker & Noah Mendelson & Dipankar Chugh & Sam Schott & Hoe H. Tan & Henning Sirringhaus & Igor Aharonovich & Mete Atatüre, 2022. "Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Michael Hollenbach & Nico Klingner & Nagesh S. Jagtap & Lothar Bischoff & Ciarán Fowley & Ulrich Kentsch & Gregor Hlawacek & Artur Erbe & Nikolay V. Abrosimov & Manfred Helm & Yonder Berencén & Georgy, 2022. "Wafer-scale nanofabrication of telecom single-photon emitters in silicon," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. F. Fuchs & B. Stender & M. Trupke & D. Simin & J. Pflaum & V. Dyakonov & G. V. Astakhov, 2015. "Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen-Xuan He & Ji-Yang Zhou & Qiang Li & Wu-Xi Lin & Rui-Jian Liang & Jun-Feng Wang & Xiao-Lei Wen & Zhi-He Hao & Wei Liu & Shuo Ren & Hao Li & Li-Xing You & Rui-Jun Zhang & Feng Zhang & Jian-Shun Tan, 2024. "Robust single modified divacancy color centers in 4H-SiC under resonant excitation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Hanfeng Wang & Matthew E. Trusheim & Laura Kim & Hamza Raniwala & Dirk R. Englund, 2023. "Field programmable spin arrays for scalable quantum repeaters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Mario E Rivero-Angeles, 2021. "Quantum-based wireless sensor networks: A review and open questions," International Journal of Distributed Sensor Networks, , vol. 17(10), pages 15501477211, October.
    4. Sunihl Ma & Young-Kwang Jung & Jihoon Ahn & Jihoon Kyhm & Jeiwan Tan & Hyungsoo Lee & Gyumin Jang & Chan Uk Lee & Aron Walsh & Jooho Moon, 2022. "Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Sheng Zhang & Jixuan Shi & Yibo Liang & Yuedong Sun & Yukai Wu & Luming Duan & Yunfei Pu, 2024. "Fast delivery of heralded atom-photon quantum correlation over 12 km fiber through multiplexing enhancement," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Cunzhi Zhang & Francois Gygi & Giulia Galli, 2023. "Engineering the formation of spin-defects from first principles," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Nicholas A. Güsken & Ming Fu & Maximilian Zapf & Michael P. Nielsen & Paul Dichtl & Robert Röder & Alex S. Clark & Stefan A. Maier & Carsten Ronning & Rupert F. Oulton, 2023. "Emission enhancement of erbium in a reverse nanofocusing waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Ziqian Li & Tanay Roy & David Rodríguez Pérez & Kan-Heng Lee & Eliot Kapit & David I. Schuster, 2024. "Autonomous error correction of a single logical qubit using two transmons," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    11. Yan-Kai Tzeng & Feng Ke & Chunjing Jia & Yayuan Liu & Sulgiye Park & Minkyung Han & Mungo Frost & Xinxin Cai & Wendy L. Mao & Rodney C. Ewing & Yi Cui & Thomas P. Devereaux & Yu Lin & Steven Chu, 2024. "Improving the creation of SiV centers in diamond via sub-μs pulsed annealing treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Valeria Saggio & Carlos Errando-Herranz & Samuel Gyger & Christopher Panuski & Mihika Prabhu & Lorenzo Santis & Ian Christen & Dalia Ornelas-Huerta & Hamza Raniwala & Connor Gerlach & Marco Colangelo , 2024. "Cavity-enhanced single artificial atoms in silicon," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    14. John C. Thomas & Wei Chen & Yihuang Xiong & Bradford A. Barker & Junze Zhou & Weiru Chen & Antonio Rossi & Nolan Kelly & Zhuohang Yu & Da Zhou & Shalini Kumari & Edward S. Barnard & Joshua A. Robinson, 2024. "A substitutional quantum defect in WS2 discovered by high-throughput computational screening and fabricated by site-selective STM manipulation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. William P. Livingston & Machiel S. Blok & Emmanuel Flurin & Justin Dressel & Andrew N. Jordan & Irfan Siddiqi, 2022. "Experimental demonstration of continuous quantum error correction," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Aaron M. Day & Madison Sutula & Jonathan R. Dietz & Alexander Raun & Denis D. Sukachev & Mihir K. Bhaskar & Evelyn L. Hu, 2024. "Electrical manipulation of telecom color centers in silicon," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Likai Yang & Sihao Wang & Mohan Shen & Jiacheng Xie & Hong X. Tang, 2023. "Controlling single rare earth ion emission in an electro-optical nanocavity," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    18. Stefano Reale & Jiyoon Hwang & Jeongmin Oh & Harald Brune & Andreas J. Heinrich & Fabio Donati & Yujeong Bae, 2024. "Electrically driven spin resonance of 4f electrons in a single atom on a surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Sophie W. Ding & Michael Haas & Xinghan Guo & Kazuhiro Kuruma & Chang Jin & Zixi Li & David D. Awschalom & Nazar Delegan & F. Joseph Heremans & Alexander A. High & Marko Loncar, 2024. "High-Q cavity interface for color centers in thin film diamond," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Gheorghe Taran & Eufemio Moreno-Pineda & Michael Schulze & Edgar Bonet & Mario Ruben & Wolfgang Wernsdorfer, 2023. "Direct determination of high-order transverse ligand field parameters via µSQUID-EPR in a Et4N[160GdPc2] SMM," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43923-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.