IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v558y2018i7709d10.1038_s41586-018-0200-5.html
   My bibliography  Save this article

Deterministic delivery of remote entanglement on a quantum network

Author

Listed:
  • Peter C. Humphreys

    (QuTech and Kavli Institute of Nanoscience, Delft University of Technology)

  • Norbert Kalb

    (QuTech and Kavli Institute of Nanoscience, Delft University of Technology)

  • Jaco P. J. Morits

    (QuTech and Kavli Institute of Nanoscience, Delft University of Technology)

  • Raymond N. Schouten

    (QuTech and Kavli Institute of Nanoscience, Delft University of Technology)

  • Raymond F. L. Vermeulen

    (QuTech and Kavli Institute of Nanoscience, Delft University of Technology)

  • Daniel J. Twitchen

    (Element Six Innovation)

  • Matthew Markham

    (Element Six Innovation)

  • Ronald Hanson

    (QuTech and Kavli Institute of Nanoscience, Delft University of Technology)

Abstract

Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes1–7. Moving beyond current two-node networks8–13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform 14 . At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.

Suggested Citation

  • Peter C. Humphreys & Norbert Kalb & Jaco P. J. Morits & Raymond N. Schouten & Raymond F. L. Vermeulen & Daniel J. Twitchen & Matthew Markham & Ronald Hanson, 2018. "Deterministic delivery of remote entanglement on a quantum network," Nature, Nature, vol. 558(7709), pages 268-273, June.
  • Handle: RePEc:nat:nature:v:558:y:2018:i:7709:d:10.1038_s41586-018-0200-5
    DOI: 10.1038/s41586-018-0200-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0200-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0200-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario E Rivero-Angeles, 2021. "Quantum-based wireless sensor networks: A review and open questions," International Journal of Distributed Sensor Networks, , vol. 17(10), pages 15501477211, October.
    2. Pasquale Cilibrizzi & Muhammad Junaid Arshad & Benedikt Tissot & Nguyen Tien Son & Ivan G. Ivanov & Thomas Astner & Philipp Koller & Misagh Ghezellou & Jawad Ul-Hassan & Daniel White & Christiaan Bekk, 2023. "Ultra-narrow inhomogeneous spectral distribution of telecom-wavelength vanadium centres in isotopically-enriched silicon carbide," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Hanfeng Wang & Matthew E. Trusheim & Laura Kim & Hamza Raniwala & Dirk R. Englund, 2023. "Field programmable spin arrays for scalable quantum repeaters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Sunihl Ma & Young-Kwang Jung & Jihoon Ahn & Jihoon Kyhm & Jeiwan Tan & Hyungsoo Lee & Gyumin Jang & Chan Uk Lee & Aron Walsh & Jooho Moon, 2022. "Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:558:y:2018:i:7709:d:10.1038_s41586-018-0200-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.