IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49447-y.html
   My bibliography  Save this article

Electrically driven spin resonance of 4f electrons in a single atom on a surface

Author

Listed:
  • Stefano Reale

    (Institute for Basic Science (IBS)
    Ewha Womans University
    Politecnico di Milano)

  • Jiyoon Hwang

    (Institute for Basic Science (IBS)
    Ewha Womans University)

  • Jeongmin Oh

    (Institute for Basic Science (IBS)
    Ewha Womans University)

  • Harald Brune

    (Ecole Polytechnique Fédérale de Lausanne)

  • Andreas J. Heinrich

    (Institute for Basic Science (IBS)
    Ewha Womans University)

  • Fabio Donati

    (Institute for Basic Science (IBS)
    Ewha Womans University)

  • Yujeong Bae

    (Institute for Basic Science (IBS)
    Ewha Womans University
    Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory)

Abstract

A pivotal challenge in quantum technologies lies in reconciling long coherence times with efficient manipulation of the quantum states of a system. Lanthanide atoms, with their well-localized 4f electrons, emerge as a promising solution to this dilemma if provided with a rational design for manipulation and detection. Here we construct tailored spin structures to perform electron spin resonance on a single lanthanide atom using a scanning tunneling microscope. A magnetically coupled structure made of an erbium and a titanium atom enables us to both drive the erbium’s 4f electron spins and indirectly probe them through the titanium’s 3d electrons. The erbium spin states exhibit an extended spin relaxation time and a higher driving efficiency compared to 3d atoms with spin ½ in similarly coupled structures. Our work provides a new approach to accessing highly protected spin states, enabling their coherent control in an all-electric fashion.

Suggested Citation

  • Stefano Reale & Jiyoon Hwang & Jeongmin Oh & Harald Brune & Andreas J. Heinrich & Fabio Donati & Yujeong Bae, 2024. "Electrically driven spin resonance of 4f electrons in a single atom on a surface," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49447-y
    DOI: 10.1038/s41467-024-49447-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49447-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49447-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diana Serrano & Senthil Kumar Kuppusamy & Benoît Heinrich & Olaf Fuhr & David Hunger & Mario Ruben & Philippe Goldner, 2022. "Ultra-narrow optical linewidths in rare-earth molecular crystals," Nature, Nature, vol. 603(7900), pages 241-246, March.
    2. Jonathan M. Kindem & Andrei Ruskuc & John G. Bartholomew & Jake Rochman & Yan Qi Huan & Andrei Faraon, 2020. "Control and single-shot readout of an ion embedded in a nanophotonic cavity," Nature, Nature, vol. 580(7802), pages 201-204, April.
    3. Muhandis Shiddiq & Dorsa Komijani & Yan Duan & Alejandro Gaita-Ariño & Eugenio Coronado & Stephen Hill, 2016. "Enhancing coherence in molecular spin qubits via atomic clock transitions," Nature, Nature, vol. 531(7594), pages 348-351, March.
    4. Chunming Yin & Milos Rancic & Gabriele G. de Boo & Nikolas Stavrias & Jeffrey C. McCallum & Matthew J. Sellars & Sven Rogge, 2013. "Optical addressing of an individual erbium ion in silicon," Nature, Nature, vol. 497(7447), pages 91-94, May.
    5. R. Kolesov & K. Xia & R. Reuter & R. Stöhr & A. Zappe & J. Meijer & P.R. Hemmer & J. Wrachtrup, 2012. "Optical detection of a single rare-earth ion in a crystal," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    6. Fabian D. Natterer & Kai Yang & William Paul & Philip Willke & Taeyoung Choi & Thomas Greber & Andreas J. Heinrich & Christopher P. Lutz, 2017. "Reading and writing single-atom magnets," Nature, Nature, vol. 543(7644), pages 226-228, March.
    7. A. Singha & P. Willke & T. Bilgeri & X. Zhang & H. Brune & F. Donati & A. J. Heinrich & T. Choi, 2021. "Engineering atomic-scale magnetic fields by dysprosium single atom magnets," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    8. Romain Vincent & Svetlana Klyatskaya & Mario Ruben & Wolfgang Wernsdorfer & Franck Balestro, 2012. "Electronic read-out of a single nuclear spin using a molecular spin transistor," Nature, Nature, vol. 488(7411), pages 357-360, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas M. Veldman & Evert W. Stolte & Mark P. Canavan & Rik Broekhoven & Philip Willke & Laëtitia Farinacci & Sander Otte, 2024. "Coherent spin dynamics between electron and nucleus within a single atom," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Tolulope Michael Ajayi & Vijay Singh & Kyaw Zin Latt & Sanjoy Sarkar & Xinyue Cheng & Sineth Premarathna & Naveen K. Dandu & Shaoze Wang & Fahimeh Movahedifar & Sarah Wieghold & Nozomi Shirato & Volke, 2022. "Atomically precise control of rotational dynamics in charged rare-earth complexes on a metal surface," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Gheorghe Taran & Eufemio Moreno-Pineda & Michael Schulze & Edgar Bonet & Mario Ruben & Wolfgang Wernsdorfer, 2023. "Direct determination of high-order transverse ligand field parameters via µSQUID-EPR in a Et4N[160GdPc2] SMM," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Nicholas A. Güsken & Ming Fu & Maximilian Zapf & Michael P. Nielsen & Paul Dichtl & Robert Röder & Alex S. Clark & Stefan A. Maier & Carsten Ronning & Rupert F. Oulton, 2023. "Emission enhancement of erbium in a reverse nanofocusing waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Feng Wang & Wangqiang Shen & Yuan Shui & Jun Chen & Huaiqiang Wang & Rui Wang & Yuyuan Qin & Xuefeng Wang & Jianguo Wan & Minhao Zhang & Xing Lu & Tao Yang & Fengqi Song, 2024. "Electrically controlled nonvolatile switching of single-atom magnetism in a Dy@C84 single-molecule transistor," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Stefan Repp & Moritz Remmers & Alexandra Stefanie Jessica Rein & Dieter Sorsche & Dandan Gao & Montaha Anjass & Mihail Mondeshki & Luca M. Carrella & Eva Rentschler & Carsten Streb, 2023. "Coupled reaction equilibria enable the light-driven formation of metal-functionalized molecular vanadium oxides," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Likai Yang & Sihao Wang & Mohan Shen & Jiacheng Xie & Hong X. Tang, 2023. "Controlling single rare earth ion emission in an electro-optical nanocavity," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    11. Jon G. C. Kragskow & Jonathan Marbey & Christian D. Buch & Joscha Nehrkorn & Mykhaylo Ozerov & Stergios Piligkos & Stephen Hill & Nicholas F. Chilton, 2022. "Analysis of vibronic coupling in a 4f molecular magnet with FIRMS," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. R. Žitko & G. G. Blesio & L. O. Manuel & A. A. Aligia, 2021. "Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Pasquale Cilibrizzi & Muhammad Junaid Arshad & Benedikt Tissot & Nguyen Tien Son & Ivan G. Ivanov & Thomas Astner & Philipp Koller & Misagh Ghezellou & Jawad Ul-Hassan & Daniel White & Christiaan Bekk, 2023. "Ultra-narrow inhomogeneous spectral distribution of telecom-wavelength vanadium centres in isotopically-enriched silicon carbide," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Giulia Serrano & Lorenzo Poggini & Giuseppe Cucinotta & Andrea Luigi Sorrentino & Niccolò Giaconi & Brunetto Cortigiani & Danilo Longo & Edwige Otero & Philippe Sainctavit & Andrea Caneschi & Matteo M, 2022. "Magnetic molecules as local sensors of topological hysteresis of superconductors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Tian Pei & James O. Thomas & Simen Sopp & Ming-Yee Tsang & Nicola Dotti & Jonathan Baugh & Nicholas F. Chilton & Salvador Cardona-Serra & Alejandro Gaita-Ariño & Harry L. Anderson & Lapo Bogani, 2022. "Exchange-induced spin polarization in a single magnetic molecule junction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Adam Johnston & Ulises Felix-Rendon & Yu-En Wong & Songtao Chen, 2024. "Cavity-coupled telecom atomic source in silicon," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49447-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.