IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36799-0.html
   My bibliography  Save this article

Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators

Author

Listed:
  • Jake Rochman

    (California Institute of Technology
    California Institute of Technology)

  • Tian Xie

    (California Institute of Technology
    California Institute of Technology)

  • John G. Bartholomew

    (California Institute of Technology
    California Institute of Technology
    The University of Sydney Nano Institute, The University of Sydney
    The University of Sydney)

  • K. C. Schwab

    (California Institute of Technology
    California Institute of Technology)

  • Andrei Faraon

    (California Institute of Technology
    California Institute of Technology)

Abstract

Optical quantum networks can connect distant quantum processors to enable secure quantum communication and distributed quantum computing. Superconducting qubits are a leading technology for quantum information processing but cannot couple to long-distance optical networks without an efficient, coherent, and low noise interface between microwave and optical photons. Here, we demonstrate a microwave-to-optical transducer using an ensemble of erbium ions that is simultaneously coupled to a superconducting microwave resonator and a nanophotonic optical resonator. The coherent atomic transitions of the ions mediate the frequency conversion from microwave photons to optical photons and using photon counting we observed device conversion efficiency approaching 10−7. With pulsed operation at a low duty cycle, the device maintained a spin temperature below 100 mK and microwave resonator heating of less than 0.15 quanta.

Suggested Citation

  • Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36799-0
    DOI: 10.1038/s41467-023-36799-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36799-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36799-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan M. Kindem & Andrei Ruskuc & John G. Bartholomew & Jake Rochman & Yan Qi Huan & Andrei Faraon, 2020. "Control and single-shot readout of an ion embedded in a nanophotonic cavity," Nature, Nature, vol. 580(7802), pages 201-204, April.
    2. John G. Bartholomew & Jake Rochman & Tian Xie & Jonathan M. Kindem & Andrei Ruskuc & Ioana Craiciu & Mi Lei & Andrei Faraon, 2020. "On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    4. Mouktik Raha & Songtao Chen & Christopher M. Phenicie & Salim Ourari & Alan M. Dibos & Jeff D. Thompson, 2020. "Optical quantum nondemolition measurement of a single rare earth ion qubit," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    5. Rishabh Sahu & William Hease & Alfredo Rueda & Georg Arnold & Liu Qiu & Johannes M. Fink, 2022. "Quantum-enabled operation of a microwave-optical interface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Dario Lago-Rivera & Samuele Grandi & Jelena V. Rakonjac & Alessandro Seri & Hugues de Riedmatten, 2021. "Telecom-heralded entanglement between multimode solid-state quantum memories," Nature, Nature, vol. 594(7861), pages 37-40, June.
    7. H. J. Kimble, 2008. "The quantum internet," Nature, Nature, vol. 453(7198), pages 1023-1030, June.
    8. Mohammad Mirhosseini & Alp Sipahigil & Mahmoud Kalaee & Oskar Painter, 2020. "Superconducting qubit to optical photon transduction," Nature, Nature, vol. 588(7839), pages 599-603, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Likai Yang & Sihao Wang & Mohan Shen & Jiacheng Xie & Hong X. Tang, 2023. "Controlling single rare earth ion emission in an electro-optical nanocavity," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Chiao-Hsuan Wang & Fangxin Li & Liang Jiang, 2022. "Quantum capacities of transducers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Liu Qiu & Rishabh Sahu & William Hease & Georg Arnold & Johannes M. Fink, 2023. "Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Arjun Iyer & Yadav P. Kandel & Wendao Xu & John M. Nichol & William H. Renninger, 2024. "Coherent optical coupling to surface acoustic wave devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Terence Blésin & Wil Kao & Anat Siddharth & Rui N. Wang & Alaina Attanasio & Hao Tian & Sunil A. Bhave & Tobias J. Kippenberg, 2024. "Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    13. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    14. Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
    15. Nicholas A. Güsken & Ming Fu & Maximilian Zapf & Michael P. Nielsen & Paul Dichtl & Robert Röder & Alex S. Clark & Stefan A. Maier & Carsten Ronning & Rupert F. Oulton, 2023. "Emission enhancement of erbium in a reverse nanofocusing waveguide," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Jesús Fernández-Villaverde & Isaiah J. Hull, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," NBER Working Papers 31326, National Bureau of Economic Research, Inc.
    18. Yannick Seis & Thibault Capelle & Eric Langman & Sampo Saarinen & Eric Planz & Albert Schliesser, 2022. "Ground state cooling of an ultracoherent electromechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Antonio A Lagana & Max A Lohe & Lorenz von Smekal, 2011. "Interfacing External Quantum Devices to a Universal Quantum Computer," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36799-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.