IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43436-3.html
   My bibliography  Save this article

Design principles for sodium superionic conductors

Author

Listed:
  • Shuo Wang

    (University of Maryland)

  • Jiamin Fu

    (University of Western Ontario
    University of Western Ontario)

  • Yunsheng Liu

    (University of Maryland)

  • Ramanuja Srinivasan Saravanan

    (University of Maryland)

  • Jing Luo

    (University of Western Ontario)

  • Sixu Deng

    (University of Western Ontario)

  • Tsun-Kong Sham

    (University of Western Ontario)

  • Xueliang Sun

    (University of Western Ontario)

  • Yifei Mo

    (University of Maryland
    University of Maryland)

Abstract

Motivated by the high-performance solid-state lithium batteries enabled by lithium superionic conductors, sodium superionic conductor materials have great potential to empower sodium batteries with high energy, low cost, and sustainability. A critical challenge lies in designing and discovering sodium superionic conductors with high ionic conductivities to enable the development of solid-state sodium batteries. Here, by studying the structures and diffusion mechanisms of Li-ion versus Na-ion conducting solids, we reveal the structural feature of face-sharing high-coordination sites for fast sodium-ion conductors. By applying this feature as a design principle, we discover a number of Na-ion conductors in oxides, sulfides, and halides. Notably, we discover a chloride-based family of Na-ion conductors NaxMyCl6 (M = La–Sm) with UCl3-type structure and experimentally validate with the highest reported ionic conductivity. Our findings not only pave the way for the future development of sodium-ion conductors for sodium batteries, but also consolidate design principles of fast ion-conducting materials for a variety of energy applications.

Suggested Citation

  • Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43436-3
    DOI: 10.1038/s41467-023-43436-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43436-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43436-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuya Wei & Shaomao Xu & Akanksha Agrawral & Snehashis Choudhury & Yingying Lu & Zhengyuan Tu & Lin Ma & Lynden A. Archer, 2016. "A stable room-temperature sodium–sulfur battery," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    2. A. Hayashi & N. Masuzawa & S. Yubuchi & F. Tsuji & C. Hotehama & A. Sakuda & M. Tatsumisago, 2019. "A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    3. William D. Richards & Tomoyuki Tsujimura & Lincoln J. Miara & Yan Wang & Jae Chul Kim & Shyue Ping Ong & Ichiro Uechi & Naoki Suzuki & Gerbrand Ceder, 2016. "Design and synthesis of the superionic conductor Na10SnP2S12," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    4. Ying Zhang & Xingfeng He & Zhiqian Chen & Qiang Bai & Adelaide M. Nolan & Charles A. Roberts & Debasish Banerjee & Tomoya Matsunaga & Yifei Mo & Chen Ling, 2019. "Unsupervised discovery of solid-state lithium ion conductors," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Xingfeng He & Yizhou Zhu & Yifei Mo, 2017. "Origin of fast ion diffusion in super-ionic conductors," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    6. You Zhou & Xiaofei Guan & Hua Zhou & Koushik Ramadoss & Suhare Adam & Huajun Liu & Sungsik Lee & Jian Shi & Masaru Tsuchiya & Dillon D. Fong & Shriram Ramanathan, 2016. "Strongly correlated perovskite fuel cells," Nature, Nature, vol. 534(7606), pages 231-234, June.
    7. Jürgen Janek & Wolfgang G. Zeier, 2016. "A solid future for battery development," Nature Energy, Nature, vol. 1(9), pages 1-4, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhimin Chen & Tao Du & N. M. Anoop Krishnan & Yuanzheng Yue & Morten M. Smedskjaer, 2025. "Disorder-induced enhancement of lithium-ion transport in solid-state electrolytes," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Sebastian Scheld, Walter & Charlotte Hoff, Linda & Vedder, Christian & Stollenwerk, Jochen & Grüner, Daniel & Rosen, Melanie & Lobe, Sandra & Ihrig, Martin & Seok, Ah–Ram & Finsterbusch, Martin & Uhle, 2023. "Enabling metal substrates for garnet-based composite cathodes by laser sintering," Applied Energy, Elsevier, vol. 345(C).
    3. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    4. Nian Zhang & Guoxi Ren & Lili Li & Zhi Wang & Pengfei Yu & Xiaobao Li & Jing Zhou & Hui Zhang & Linjuan Zhang & Zhi Liu & Xiaosong Liu, 2024. "Dynamical evolution of CO2 and H2O on garnet electrolyte elucidated by ambient pressure X-ray spectroscopies," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. JunHwa Kwon & Soonsung So & Ki-Yeop Cho & Seungmin Lee & Kiyeon Sim & Subin Kim & Seunghyun Jo & Byeol Kang & Youn-Ki Lee & Hee-Young Park & Jung Tae Lee & Joo-Hyoung Lee & KwangSup Eom & Thomas F. Fu, 2024. "Galvanic hydrogenation reaction in metal oxide," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Dong-Su Ko & Sewon Kim & Sangjun Lee & Gabin Yoon & Daeho Kim & ChaeHo Shin & Dongmin Kim & Jaewoo Lee & Soohwan Sul & Dong-Jin Yun & Changhoon Jung, 2025. "Mechanism of stable lithium plating and stripping in a metal-interlayer-inserted anode-less solid-state lithium metal battery," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2020. "Economic analysis of batteries: Impact on security of electricity supply and renewable energy expansion in Germany," Applied Energy, Elsevier, vol. 275(C).
    9. Xinxin Wang & Jingjing Chen & Dajian Wang & Zhiyong Mao, 2021. "Improving the alkali metal electrode/inorganic solid electrolyte contact via room-temperature ultrasound solid welding," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Bowen Zhang & Botao Yuan & Xin Yan & Xiao Han & Jiawei Zhang & Huifeng Tan & Changuo Wang & Pengfei Yan & Huajian Gao & Yuanpeng Liu, 2025. "Atomic mechanism of lithium dendrite penetration in solid electrolytes," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Tang, Kejian & Peng, Xiangqi & Chen, Shuijiao & Song, Fei & Liu, Zhichao & Hu, Jian & Xie, Xiuqiang & Wu, Zhenjun, 2022. "Hierarchically porous carbon derived from delignified biomass for high sulfur-loading room-temperature sodium-sulfur batteries," Renewable Energy, Elsevier, vol. 201(P1), pages 832-840.
    12. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Xiangkun Kong & Run Gu & Zongzi Jin & Lei Zhang & Chi Zhang & Wenyi Xiang & Cui Li & Kang Zhu & Yifan Xu & Huang Huang & Xiaoye Liu & Ranran Peng & Chengwei Wang, 2024. "Maximizing interface stability in all-solid-state lithium batteries through entropy stabilization and fast kinetics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Chengyu Fu & Yifan Li & Wenjie Xu & Xuyong Feng & Weijian Gu & Jue Liu & Wenwen Deng & Wei Wang & A. M. Milinda Abeykoon & Laisuo Su & Lingyun Zhu & Xiaojun Wu & Hongfa Xiang, 2024. "LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Mergo Mbeya, Karrick & Damay, Nicolas & Friedrich, Guy & Forgez, Christophe & Juston, Maxime, 2021. "Off-line method to determine the electrode balancing of Li-ion batteries," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 34-47.
    18. Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Shah, M.A.K. Yousaf & Lu, Yuzheng & Mushtaq, Naveed & Rauf, Sajid & Yousaf, Muhammad & Asghar, Muhammad Imran & Lund, Peter D. & Zhu, Bin, 2022. "Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cells," Renewable Energy, Elsevier, vol. 196(C), pages 901-911.
    20. Qidi Wang & Yunan Zhou & Xuelong Wang & Hao Guo & Shuiping Gong & Zhenpeng Yao & Fangting Wu & Jianlin Wang & Swapna Ganapathy & Xuedong Bai & Baohua Li & Chenglong Zhao & Jürgen Janek & Marnix Wagema, 2024. "Designing lithium halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43436-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.