IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56322-x.html
   My bibliography  Save this article

Disorder-induced enhancement of lithium-ion transport in solid-state electrolytes

Author

Listed:
  • Zhimin Chen

    (Aalborg University)

  • Tao Du

    (Aalborg University
    The Hong Kong Polytechnic University)

  • N. M. Anoop Krishnan

    (Indian Institute of Technology Delhi)

  • Yuanzheng Yue

    (Aalborg University)

  • Morten M. Smedskjaer

    (Aalborg University)

Abstract

Enhancing the ion conduction in solid electrolytes is critically important for the development of high-performance all-solid-state lithium-ion batteries (LIBs). Lithium thiophosphates are among the most promising solid electrolytes, as they exhibit superionic conductivity at room temperature. However, the lack of comprehensive understanding of their ion conduction mechanism, especially the effect of structural disorder on ionic conductivity, is a long-standing problem that limits further innovations in all-solid-state LIBs. Here, we address this challenge by establishing and employing a deep learning potential to simulate Li3PS4 electrolyte systems with varying levels of disorder. The results show that disorder-driven diffusion dynamics significantly enhances the room-temperature conductivity. We further establish bridges between dynamical characteristics, local structural features, and atomic rearrangements by applying a machine learning-based structure fingerprint termed “softness”. This metric allows the classification of the disorder-induced “soft” hopping lithium ions. Our findings offer insights into ion conduction mechanisms in complex disordered structures, thereby contributing to the development of superior solid-state electrolytes for LIBs.

Suggested Citation

  • Zhimin Chen & Tao Du & N. M. Anoop Krishnan & Yuanzheng Yue & Morten M. Smedskjaer, 2025. "Disorder-induced enhancement of lithium-ion transport in solid-state electrolytes," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56322-x
    DOI: 10.1038/s41467-025-56322-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56322-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56322-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56322-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.