IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45864-1.html
   My bibliography  Save this article

Promoting high-voltage stability through local lattice distortion of halide solid electrolytes

Author

Listed:
  • Zhenyou Song

    (Tongji University)

  • Tengrui Wang

    (Tongji University)

  • Hua Yang

    (Spallation Neutron Source Science Center
    Chinese Academy of Sciences)

  • Wang Hay Kan

    (Spallation Neutron Source Science Center
    Chinese Academy of Sciences)

  • Yuwei Chen

    (Tongji University)

  • Qian Yu

    (Tongji University)

  • Likuo Wang

    (Tongji University)

  • Yini Zhang

    (Tongji University)

  • Yiming Dai

    (Tongji University)

  • Huaican Chen

    (Spallation Neutron Source Science Center
    Chinese Academy of Sciences)

  • Wen Yin

    (Spallation Neutron Source Science Center
    Chinese Academy of Sciences)

  • Takashi Honda

    (High Energy Accelerator Research Organization (KEK)
    High Energy Accelerator Research Organization (KEK))

  • Maxim Avdeev

    (Australian Nuclear Science and Technology Organisation (ANSTO)
    University of Sydney)

  • Henghui Xu

    (Huazhong University of Science and Technology)

  • Jiwei Ma

    (Tongji University)

  • Yunhui Huang

    (Huazhong University of Science and Technology)

  • Wei Luo

    (Tongji University)

Abstract

Stable solid electrolytes are essential to high-safety and high-energy-density lithium batteries, especially for applications with high-voltage cathodes. In such conditions, solid electrolytes may experience severe oxidation, decomposition, and deactivation during charging at high voltages, leading to inadequate cycling performance and even cell failure. Here, we address the high-voltage limitation of halide solid electrolytes by introducing local lattice distortion to confine the distribution of Cl−, which effectively curbs kinetics of their oxidation. The confinement is realized by substituting In with multiple elements in Li3InCl6 to give a high-entropy Li2.75Y0.16Er0.16Yb0.16In0.25Zr0.25Cl6. Meanwhile, the lattice distortion promotes longer Li-Cl bonds, facilitating favorable activation of Li+. Our results show that this high-entropy halide electrolyte boosts the cycle stability of all-solid-state battery by 250% improvement over 500 cycles. In particular, the cell provides a higher discharge capacity of 185 mAh g−1 by increasing the charge cut-off voltage to 4.6 V at a small current rate of 0.2 C, which is more challenging to electrolytes|cathode stability. These findings deepen our understanding of high-entropy materials, advancing their use in energy-related applications.

Suggested Citation

  • Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45864-1
    DOI: 10.1038/s41467-024-45864-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45864-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45864-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sung-Kyun Jung & Hyeokjo Gwon & Hyungsub Kim & Gabin Yoon & Dongki Shin & Jihyun Hong & Changhoon Jung & Ju-Sik Kim, 2022. "Unlocking the hidden chemical space in cubic-phase garnet solid electrolyte for efficient quasi-all-solid-state lithium batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Jijian Xu & Jiaxun Zhang & Travis P. Pollard & Qingdong Li & Sha Tan & Singyuk Hou & Hongli Wan & Fu Chen & Huixin He & Enyuan Hu & Kang Xu & Xiao-Qing Yang & Oleg Borodin & Chunsheng Wang, 2023. "Electrolyte design for Li-ion batteries under extreme operating conditions," Nature, Nature, vol. 614(7949), pages 694-700, February.
    3. Jürgen Janek & Wolfgang G. Zeier, 2016. "A solid future for battery development," Nature Energy, Nature, vol. 1(9), pages 1-4, September.
    4. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Lv Hu & Jinzhu Wang & Kai Wang & Zhenqi Gu & Zhiwei Xi & Hui Li & Fang Chen & Youxi Wang & Zhenyu Li & Cheng Ma, 2023. "A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yi-Chen Yin & Jing-Tian Yang & Jin-Da Luo & Gong-Xun Lu & Zhongyuan Huang & Jian-Ping Wang & Pai Li & Feng Li & Ye-Chao Wu & Te Tian & Yu-Feng Meng & Hong-Sheng Mo & Yong-Hui Song & Jun-Nan Yang & Li-, 2023. "A LaCl3-based lithium superionic conductor compatible with lithium metal," Nature, Nature, vol. 616(7955), pages 77-83, April.
    7. Kai Wang & Qingyong Ren & Zhenqi Gu & Chaomin Duan & Jinzhu Wang & Feng Zhu & Yuanyuan Fu & Jipeng Hao & Jinfeng Zhu & Lunhua He & Chin-Wei Wang & Yingying Lu & Jie Ma & Cheng Ma, 2021. "A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Fudong Han & Andrew S. Westover & Jie Yue & Xiulin Fan & Fei Wang & Miaofang Chi & Donovan N. Leonard & Nancy J. Dudney & Howard Wang & Chunsheng Wang, 2019. "High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes," Nature Energy, Nature, vol. 4(3), pages 187-196, March.
    9. Jürgen Janek & Wolfgang G. Zeier, 2023. "Challenges in speeding up solid-state battery development," Nature Energy, Nature, vol. 8(3), pages 230-240, March.
    10. Laidong Zhou & Tong-Tong Zuo & Chun Yuen Kwok & Se Young Kim & Abdeljalil Assoud & Qiang Zhang & Jürgen Janek & Linda F. Nazar, 2022. "High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes," Nature Energy, Nature, vol. 7(1), pages 83-93, January.
    11. Robert A. House & John-Joseph Marie & Miguel A. Pérez-Osorio & Gregory J. Rees & Edouard Boivin & Peter G. Bruce, 2021. "The role of O2 in O-redox cathodes for Li-ion batteries," Nature Energy, Nature, vol. 6(8), pages 781-789, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qidi Wang & Yunan Zhou & Xuelong Wang & Hao Guo & Shuiping Gong & Zhenpeng Yao & Fangting Wu & Jianlin Wang & Swapna Ganapathy & Xuedong Bai & Baohua Li & Chenglong Zhao & Jürgen Janek & Marnix Wagema, 2024. "Designing lithium halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Chengyu Fu & Yifan Li & Wenjie Xu & Xuyong Feng & Weijian Gu & Jue Liu & Wenwen Deng & Wei Wang & A. M. Milinda Abeykoon & Laisuo Su & Lingyun Zhu & Xiaojun Wu & Hongfa Xiang, 2024. "LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Lv Hu & Jinzhu Wang & Kai Wang & Zhenqi Gu & Zhiwei Xi & Hui Li & Fang Chen & Youxi Wang & Zhenyu Li & Cheng Ma, 2023. "A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Xiaona Li & Jung Tae Kim & Jing Luo & Changtai Zhao & Yang Xu & Tao Mei & Ruying Li & Jianwen Liang & Xueliang Sun, 2024. "Structural regulation of halide superionic conductors for all-solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Can Yildirim & Florian Flatscher & Steffen Ganschow & Alice Lassnig & Christoph Gammer & Juraj Todt & Jozef Keckes & Daniel Rettenwander, 2024. "Understanding the origin of lithium dendrite branching in Li6.5La3Zr1.5Ta0.5O12 solid-state electrolyte via microscopy measurements," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Shumin Zhang & Feipeng Zhao & Jiatang Chen & Jiamin Fu & Jing Luo & Sandamini H. Alahakoon & Lo-Yueh Chang & Renfei Feng & Mohsen Shakouri & Jianwen Liang & Yang Zhao & Xiaona Li & Le He & Yining Huan, 2023. "A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Han Su & Yu Zhong & Changhong Wang & Yu Liu & Yang Hu & Jingru Li & Minkang Wang & Longan Jiao & Ningning Zhou & Bing Xiao & Xiuli Wang & Xueliang Sun & Jiangping Tu, 2024. "Deciphering the critical role of interstitial volume in glassy sulfide superionic conductors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Daems, K. & Yadav, P. & Dermenci, K.B. & Van Mierlo, J. & Berecibar, M., 2024. "Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    13. Xiaowei Chi & Ye Zhang & Fang Hao & Steven Kmiec & Hui Dong & Rong Xu & Kejie Zhao & Qing Ai & Tanguy Terlier & Liang Wang & Lihong Zhao & Liqun Guo & Jun Lou & Huolin L. Xin & Steve W. Martin & Yan Y, 2022. "An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Wesley Chang & Richard May & Michael Wang & Gunnar Thorsteinsson & Jeff Sakamoto & Lauren Marbella & Daniel Steingart, 2021. "Evolving contact mechanics and microstructure formation dynamics of the lithium metal-Li7La3Zr2O12 interface," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    15. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Sebastian Scheld, Walter & Charlotte Hoff, Linda & Vedder, Christian & Stollenwerk, Jochen & Grüner, Daniel & Rosen, Melanie & Lobe, Sandra & Ihrig, Martin & Seok, Ah–Ram & Finsterbusch, Martin & Uhle, 2023. "Enabling metal substrates for garnet-based composite cathodes by laser sintering," Applied Energy, Elsevier, vol. 345(C).
    17. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45864-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.