IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57259-x.html
   My bibliography  Save this article

Atomic mechanism of lithium dendrite penetration in solid electrolytes

Author

Listed:
  • Bowen Zhang

    (Harbin Institute of Technology
    Harbin Institute of Technology)

  • Botao Yuan

    (Harbin Institute of Technology
    Harbin Institute of Technology)

  • Xin Yan

    (Beihang University)

  • Xiao Han

    (Beijing University of Technology)

  • Jiawei Zhang

    (Harbin Institute of Technology
    Harbin Institute of Technology)

  • Huifeng Tan

    (Harbin Institute of Technology
    Harbin Institute of Technology)

  • Changuo Wang

    (Harbin Institute of Technology
    Harbin Institute of Technology)

  • Pengfei Yan

    (Beijing University of Technology)

  • Huajian Gao

    (Nanyang Technological University
    Institute of High-Performance Computing, A*STAR
    Tsinghua University)

  • Yuanpeng Liu

    (Harbin Institute of Technology
    Harbin Institute of Technology)

Abstract

Lithium dendrite penetration through ceramic electrolytes is known to result in mechanical failure and short circuits, which has impeded the commercialization of all-solid-state lithium anode batteries. However, the underlying mechanism still remains under debate, due in part to a lack of in situ atomic-level observations of the dendrite penetration process. Here, we employ molecular dynamics simulations to reproduce the dynamic process of dendrite nucleation and penetration. Our findings reveal that dynamically generated lithium depositions lead to a continuous accumulation of internal stress, culminating in fracture of the solid electrolyte at dendrite tips. We demonstrate that the classical Griffith theory remains effective in assessing this fracture mode, but it is necessary to consider the electrochemical impact of local lithium ion concentration on the fracture toughness. Additionally, in polycrystalline solid electrolytes, we observe that dendrite nuclei within grains typically deflect towards and propagate along grain boundaries. Simulations and experimental evidence both identify that dendrite induced fractures at grain boundaries exhibit a mixed Mode I and Mode II pattern, contingent on their fracture toughness and the angle between dendrites and grain boundaries. These insights deepen our understanding of dendrite penetration mechanisms and may offer valuable guidance for improving the performance of solid electrolytes.

Suggested Citation

  • Bowen Zhang & Botao Yuan & Xin Yan & Xiao Han & Jiawei Zhang & Huifeng Tan & Changuo Wang & Pengfei Yan & Huajian Gao & Yuanpeng Liu, 2025. "Atomic mechanism of lithium dendrite penetration in solid electrolytes," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57259-x
    DOI: 10.1038/s41467-025-57259-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57259-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57259-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jürgen Janek & Wolfgang G. Zeier, 2016. "A solid future for battery development," Nature Energy, Nature, vol. 1(9), pages 1-4, September.
    2. V. Reisecker & F. Flatscher & L. Porz & C. Fincher & J. Todt & I. Hanghofer & V. Hennige & M. Linares-Moreau & P. Falcaro & S. Ganschow & S. Wenner & Y.-M. Chiang & J. Keckes & J. Fleig & D. Rettenwan, 2023. "Effect of pulse-current-based protocols on the lithium dendrite formation and evolution in all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Menghao Yang & Yunsheng Liu & Yifei Mo, 2023. "Lithium crystallization at solid interfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Haowen Gao & Xin Ai & Hongchun Wang & Wangqin Li & Ping Wei & Yong Cheng & Siwei Gui & Hui Yang & Yong Yang & Ming-Sheng Wang, 2022. "Visualizing the failure of solid electrolyte under GPa-level interface stress induced by lithium eruption," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Ziyang Ning & Guanchen Li & Dominic L. R. Melvin & Yang Chen & Junfu Bu & Dominic Spencer-Jolly & Junliang Liu & Bingkun Hu & Xiangwen Gao & Johann Perera & Chen Gong & Shengda D. Pu & Shengming Zhang, 2023. "Dendrite initiation and propagation in lithium metal solid-state batteries," Nature, Nature, vol. 618(7964), pages 287-293, June.
    7. Luhan Ye & Xin Li, 2021. "A dynamic stability design strategy for lithium metal solid state batteries," Nature, Nature, vol. 593(7858), pages 218-222, May.
    8. Fudong Han & Andrew S. Westover & Jie Yue & Xiulin Fan & Fei Wang & Miaofang Chi & Donovan N. Leonard & Nancy J. Dudney & Howard Wang & Chunsheng Wang, 2019. "High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes," Nature Energy, Nature, vol. 4(3), pages 187-196, March.
    9. Jürgen Janek & Wolfgang G. Zeier, 2023. "Challenges in speeding up solid-state battery development," Nature Energy, Nature, vol. 8(3), pages 230-240, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengchen Liu & Jessica J. Hong & Elias Sebti & Ke Zhou & Shen Wang & Shijie Feng & Tyler Pennebaker & Zeyu Hui & Qiushi Miao & Ershuang Lu & Nimrod Harpak & Sicen Yu & Jianbin Zhou & Jeong Woo Oh & Mi, 2025. "Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Can Yildirim & Florian Flatscher & Steffen Ganschow & Alice Lassnig & Christoph Gammer & Juraj Todt & Jozef Keckes & Daniel Rettenwander, 2024. "Understanding the origin of lithium dendrite branching in Li6.5La3Zr1.5Ta0.5O12 solid-state electrolyte via microscopy measurements," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Yubin He & Chunyang Wang & Rui Zhang & Peichao Zou & Zhouyi Chen & Seong-Min Bak & Stephen E. Trask & Yonghua Du & Ruoqian Lin & Enyuan Hu & Huolin L. Xin, 2024. "A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Han Su & Yu Zhong & Changhong Wang & Yu Liu & Yang Hu & Jingru Li & Minkang Wang & Longan Jiao & Ningning Zhou & Bing Xiao & Xiuli Wang & Xueliang Sun & Jiangping Tu, 2024. "Deciphering the critical role of interstitial volume in glassy sulfide superionic conductors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Daems, K. & Yadav, P. & Dermenci, K.B. & Van Mierlo, J. & Berecibar, M., 2024. "Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Xiaowei Chi & Ye Zhang & Fang Hao & Steven Kmiec & Hui Dong & Rong Xu & Kejie Zhao & Qing Ai & Tanguy Terlier & Liang Wang & Lihong Zhao & Liqun Guo & Jun Lou & Huolin L. Xin & Steve W. Martin & Yan Y, 2022. "An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Wesley Chang & Richard May & Michael Wang & Gunnar Thorsteinsson & Jeff Sakamoto & Lauren Marbella & Daniel Steingart, 2021. "Evolving contact mechanics and microstructure formation dynamics of the lithium metal-Li7La3Zr2O12 interface," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    14. Yuhgene Liu & Congcheng Wang & Sun Geun Yoon & Sang Yun Han & John A. Lewis & Dhruv Prakash & Emily J. Klein & Timothy Chen & Dae Hoon Kang & Diptarka Majumdar & Rajesh Gopalaswamy & Matthew T. McDowe, 2023. "Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Lukas Ketter & Niklas Greb & Tim Bernges & Wolfgang G. Zeier, 2025. "Using resistor network models to predict the transport properties of solid-state battery composites," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    16. Han Su & Jingru Li & Yu Zhong & Yu Liu & Xuhong Gao & Juner Kuang & Minkang Wang & Chunxi Lin & Xiuli Wang & Jiangping Tu, 2024. "A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Sebastian Scheld, Walter & Charlotte Hoff, Linda & Vedder, Christian & Stollenwerk, Jochen & Grüner, Daniel & Rosen, Melanie & Lobe, Sandra & Ihrig, Martin & Seok, Ah–Ram & Finsterbusch, Martin & Uhle, 2023. "Enabling metal substrates for garnet-based composite cathodes by laser sintering," Applied Energy, Elsevier, vol. 345(C).
    19. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57259-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.