IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39686-w.html
   My bibliography  Save this article

Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes

Author

Listed:
  • Pushun Lu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yu Xia

    (Beijing ByteDance Technology Co Ltd)

  • Guochen Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Dengxu Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Siyuan Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wenlin Yan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiang Zhu

    (University of Science and Technology of China
    Tianmu Lake Institute of Advanced Energy Storage Technologies)

  • Jiaze Lu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Quanhai Niu

    (Tianmu Lake Institute of Advanced Energy Storage Technologies)

  • Shaochen Shi

    (Beijing ByteDance Technology Co Ltd)

  • Zhengju Sha

    (Beijing ByteDance Technology Co Ltd)

  • Liquan Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Tianmu Lake Institute of Advanced Energy Storage Technologies
    Yangtze River Delta Physics Research Center)

  • Hong Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Science and Technology of China
    Tianmu Lake Institute of Advanced Energy Storage Technologies)

  • Fan Wu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Science and Technology of China
    Tianmu Lake Institute of Advanced Energy Storage Technologies)

Abstract

Inorganic sulfide solid-state electrolytes, especially Li6PS5X (X = Cl, Br, I), are considered viable materials for developing all-solid-state batteries because of their high ionic conductivity and low cost. However, this class of solid-state electrolytes suffers from structural and chemical instability in humid air environments and a lack of compatibility with layered oxide positive electrode active materials. To circumvent these issues, here, we propose Li6+xMxAs1-xS5I (M=Si, Sn) as sulfide solid electrolytes. When the Li6+xSixAs1-xS5I (x = 0.8) is tested in combination with a Li-In negative electrode and Ti2S-based positive electrode at 30 °C and 30 MPa, the Li-ion lab-scale Swagelok cells demonstrate long cycle life of almost 62500 cycles at 2.44 mA cm−2, decent power performance (up to 24.45 mA cm−2) and areal capacity of 9.26 mAh cm−2 at 0.53 mA cm−2.

Suggested Citation

  • Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39686-w
    DOI: 10.1038/s41467-023-39686-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39686-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39686-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xingfeng He & Yizhou Zhu & Yifei Mo, 2017. "Origin of fast ion diffusion in super-ionic conductors," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    2. Yong-Gun Lee & Satoshi Fujiki & Changhoon Jung & Naoki Suzuki & Nobuyoshi Yashiro & Ryo Omoda & Dong-Su Ko & Tomoyuki Shiratsuchi & Toshinori Sugimoto & Saebom Ryu & Jun Hwan Ku & Taku Watanabe & Youn, 2020. "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes," Nature Energy, Nature, vol. 5(4), pages 299-308, April.
    3. Luhan Ye & Xin Li, 2021. "A dynamic stability design strategy for lithium metal solid state batteries," Nature, Nature, vol. 593(7858), pages 218-222, May.
    4. Yong-Sheng Hu, 2016. "Batteries: Getting solid," Nature Energy, Nature, vol. 1(4), pages 1-2, April.
    5. Laidong Zhou & Tong-Tong Zuo & Chun Yuen Kwok & Se Young Kim & Abdeljalil Assoud & Qiang Zhang & Jürgen Janek & Linda F. Nazar, 2022. "High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes," Nature Energy, Nature, vol. 7(1), pages 83-93, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chanho Kim & Gyutae Nam & Yoojin Ahn & Xueyu Hu & Meilin Liu, 2024. "Nb1.60Ti0.32W0.08O5−δ as negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Ziteng Liang & Yuxuan Xiang & Kangjun Wang & Jianping Zhu & Yanting Jin & Hongchun Wang & Bizhu Zheng & Zirong Chen & Mingming Tao & Xiangsi Liu & Yuqi Wu & Riqiang Fu & Chunsheng Wang & Martin Winter, 2023. "Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Ryan S. Longchamps & Shanhai Ge & Zachary J. Trdinich & Jie Liao & Chao-Yang Wang, 2024. "Battery electronification: intracell actuation and thermal management," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Han Su & Jingru Li & Yu Zhong & Yu Liu & Xuhong Gao & Juner Kuang & Minkang Wang & Chunxi Lin & Xiuli Wang & Jiangping Tu, 2024. "A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Youyou Lu & Xuan Zhang & Liyan Zhao & Hong Liu & Mi Yan & Xiaochen Zhang & Kenji Mochizuki & Shikuan Yang, 2023. "Metal-organic framework template-guided electrochemical lithography on substrates for SERS sensing applications," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Shuting Luo & Zhenyu Wang & Xuelei Li & Xinyu Liu & Haidong Wang & Weigang Ma & Lianqi Zhang & Lingyun Zhu & Xing Zhang, 2021. "Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Guo-Rui Zhu & Qin Zhang & Qing-Song Liu & Qi-Yao Bai & Yi-Zhou Quan & You Gao & Gang Wu & Yu-Zhong Wang, 2023. "Non-flammable solvent-free liquid polymer electrolyte for lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Lv Hu & Jinzhu Wang & Kai Wang & Zhenqi Gu & Zhiwei Xi & Hui Li & Fang Chen & Youxi Wang & Zhenyu Li & Cheng Ma, 2023. "A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Guangzhao Zhang & Jian Chang & Liguang Wang & Jiawei Li & Chaoyang Wang & Ruo Wang & Guoli Shi & Kai Yu & Wei Huang & Honghe Zheng & Tianpin Wu & Yonghong Deng & Jun Lu, 2023. "A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Lei Gao & Xinyu Zhang & Jinlong Zhu & Songbai Han & Hao Zhang & Liping Wang & Ruo Zhao & Song Gao & Shuai Li & Yonggang Wang & Dubin Huang & Yusheng Zhao & Ruqiang Zou, 2023. "Boosting lithium ion conductivity of antiperovskite solid electrolyte by potassium ions substitution for cation clusters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Yantao Wang & Hongtao Qu & Bowen Liu & Xiaoju Li & Jiangwei Ju & Jiedong Li & Shu Zhang & Jun Ma & Chao Li & Zhiwei Hu & Chung-Kai Chang & Hwo-Shuenn Sheu & Longfei Cui & Feng Jiang & Ernst R. H. Eck , 2023. "Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Chao Zhu & Till Fuchs & Stefan A. L. Weber & Felix. H. Richter & Gunnar Glasser & Franjo Weber & Hans-Jürgen Butt & Jürgen Janek & Rüdiger Berger, 2023. "Understanding the evolution of lithium dendrites at Li6.25Al0.25La3Zr2O12 grain boundaries via operando microscopy techniques," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39686-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.