IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48712-4.html
   My bibliography  Save this article

LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries

Author

Listed:
  • Chengyu Fu

    (Hefei University of Technology)

  • Yifan Li

    (University of Science and Technology of China)

  • Wenjie Xu

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Xuyong Feng

    (Hefei University of Technology
    Hefei University of Technology)

  • Weijian Gu

    (Hefei University of Technology)

  • Jue Liu

    (Oak Ridge National Laboratory)

  • Wenwen Deng

    (Suzhou University of Science and Technology)

  • Wei Wang

    (CAS Key Laboratory of Design and Assembly of Functional Nanostructures)

  • A. M. Milinda Abeykoon

    (National Synchrotron Light Source II, Upton)

  • Laisuo Su

    (University of Texas at Dallas)

  • Lingyun Zhu

    (School of Materials Science and Engineering)

  • Xiaojun Wu

    (University of Science and Technology of China)

  • Hongfa Xiang

    (Hefei University of Technology
    Hefei University of Technology)

Abstract

To enable high performance of all solid-state batteries, a catholyte should demonstrate high ionic conductivity, good compressibility and oxidative stability. Here, a LaCl3-based Na+ superionic conductor (Na1−xZrxLa1−xCl4) with high ionic conductivity of 2.9 × 10−4 S cm−1 (30 °C), good compressibility and high oxidative potential (3.80 V vs. Na2Sn) is prepared via solid state reaction combining mechanochemical method. X-ray diffraction reveals a hexagonal structure (P63/m) of Na1−xZrxLa1−xCl4, with Na+ ions forming a one-dimensional diffusion channel along the c-axis. First-principle calculations combining with X-ray absorption fine structure characterization etc. reveal that the ionic conductivity of Na1−xZrxLa1−xCl4 is mainly determined by the size of Na+-channels and the Na+/La3+ mixing in the one-dimensional diffusion channels. When applied as a catholyte, the NaCrO2||Na0.7Zr0.3La0.7Cl4||Na3PS4||Na2Sn all-solid-state batteries demonstrate an initial capacity of 114 mA h g−1 and 88% retention after 70 cycles at 0.3 C. In addition, a high capacity of 94 mA h g−1 can be maintained at 1 C current density.

Suggested Citation

  • Chengyu Fu & Yifan Li & Wenjie Xu & Xuyong Feng & Weijian Gu & Jue Liu & Wenwen Deng & Wei Wang & A. M. Milinda Abeykoon & Laisuo Su & Lingyun Zhu & Xiaojun Wu & Hongfa Xiang, 2024. "LaCl3-based sodium halide solid electrolytes with high ionic conductivity for all-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48712-4
    DOI: 10.1038/s41467-024-48712-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48712-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48712-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeyu Deng & Tara P. Mishra & Eunike Mahayoni & Qianli Ma & Aaron Jue Kang Tieu & Olivier Guillon & Jean-Noël Chotard & Vincent Seznec & Anthony K. Cheetham & Christian Masquelier & Gopalakrishnan Sai , 2022. "Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Erik A. Wu & Swastika Banerjee & Hanmei Tang & Peter M. Richardson & Jean-Marie Doux & Ji Qi & Zhuoying Zhu & Antonin Grenier & Yixuan Li & Enyue Zhao & Grayson Deysher & Elias Sebti & Han Nguyen & Ry, 2021. "A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Akitoshi Hayashi & Kousuke Noi & Atsushi Sakuda & Masahiro Tatsumisago, 2012. "Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries," Nature Communications, Nature, vol. 3(1), pages 1-5, January.
    4. Xiaowei Chi & Ye Zhang & Fang Hao & Steven Kmiec & Hui Dong & Rong Xu & Kejie Zhao & Qing Ai & Tanguy Terlier & Liang Wang & Lihong Zhao & Liqun Guo & Jun Lou & Huolin L. Xin & Steve W. Martin & Yan Y, 2022. "An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. William D. Richards & Tomoyuki Tsujimura & Lincoln J. Miara & Yan Wang & Jae Chul Kim & Shyue Ping Ong & Ichiro Uechi & Naoki Suzuki & Gerbrand Ceder, 2016. "Design and synthesis of the superionic conductor Na10SnP2S12," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    7. Zeyu Deng & Tara P. Mishra & Eunike Mahayoni & Qianli Ma & Aaron Jue Kang Tieu & Olivier Guillon & Jean-Noël Chotard & Vincent Seznec & Anthony K. Cheetham & Christian Masquelier & Gopalakrishnan Sai , 2022. "Author Correction: Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    8. Yi-Chen Yin & Jing-Tian Yang & Jin-Da Luo & Gong-Xun Lu & Zhongyuan Huang & Jian-Ping Wang & Pai Li & Feng Li & Ye-Chao Wu & Te Tian & Yu-Feng Meng & Hong-Sheng Mo & Yong-Hui Song & Jun-Nan Yang & Li-, 2023. "A LaCl3-based lithium superionic conductor compatible with lithium metal," Nature, Nature, vol. 616(7955), pages 77-83, April.
    9. Kai Wang & Qingyong Ren & Zhenqi Gu & Chaomin Duan & Jinzhu Wang & Feng Zhu & Yuanyuan Fu & Jipeng Hao & Jinfeng Zhu & Lunhua He & Chin-Wei Wang & Yingying Lu & Jie Ma & Cheng Ma, 2021. "A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenyou Song & Tengrui Wang & Hua Yang & Wang Hay Kan & Yuwei Chen & Qian Yu & Likuo Wang & Yini Zhang & Yiming Dai & Huaican Chen & Wen Yin & Takashi Honda & Maxim Avdeev & Henghui Xu & Jiwei Ma & Yu, 2024. "Promoting high-voltage stability through local lattice distortion of halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Lv Hu & Jinzhu Wang & Kai Wang & Zhenqi Gu & Zhiwei Xi & Hui Li & Fang Chen & Youxi Wang & Zhenyu Li & Cheng Ma, 2023. "A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Ge Sun & Chenjie Lou & Boqian Yi & Wanqing Jia & Zhixuan Wei & Shiyu Yao & Ziheng Lu & Gang Chen & Zexiang Shen & Mingxue Tang & Fei Du, 2023. "Electrochemically induced crystalline-to-amorphization transformation in sodium samarium silicate solid electrolyte for long-lasting sodium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Qidi Wang & Yunan Zhou & Xuelong Wang & Hao Guo & Shuiping Gong & Zhenpeng Yao & Fangting Wu & Jianlin Wang & Swapna Ganapathy & Xuedong Bai & Baohua Li & Chenglong Zhao & Jürgen Janek & Marnix Wagema, 2024. "Designing lithium halide solid electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Jingyang Wang & Tanjin He & Xiaochen Yang & Zijian Cai & Yan Wang & Valentina Lacivita & Haegyeom Kim & Bin Ouyang & Gerbrand Ceder, 2023. "Design principles for NASICON super-ionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Kai Wang & Zhenqi Gu & Zhiwei Xi & Lv Hu & Cheng Ma, 2023. "Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Lei Gao & Xinyu Zhang & Jinlong Zhu & Songbai Han & Hao Zhang & Liping Wang & Ruo Zhao & Song Gao & Shuai Li & Yonggang Wang & Dubin Huang & Yusheng Zhao & Ruqiang Zou, 2023. "Boosting lithium ion conductivity of antiperovskite solid electrolyte by potassium ions substitution for cation clusters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Perveen, Tahira & Siddiq, Muhammad & Shahzad, Nadia & Ihsan, Rida & Ahmad, Abrar & Shahzad, Muhammad Imran, 2020. "Prospects in anode materials for sodium ion batteries - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Aziam, Hasna & Larhrib, Badre & Hakim, Charifa & Sabi, Noha & Ben Youcef, Hicham & Saadoune, Ismael, 2022. "Solid-state electrolytes for beyond lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Xiang Xu & Yunxin Chen & Pengbin Liu & Hao Luo & Zexin Li & Dongyan Li & Haoyun Wang & Xingyu Song & Jinsong Wu & Xing Zhou & Tianyou Zhai, 2024. "General synthesis of ionic-electronic coupled two-dimensional materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Xiaona Li & Jung Tae Kim & Jing Luo & Changtai Zhao & Yang Xu & Tao Mei & Ruying Li & Jianwen Liang & Xueliang Sun, 2024. "Structural regulation of halide superionic conductors for all-solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Hong Fang & Puru Jena, 2022. "Argyrodite-type advanced lithium conductors and transport mechanisms beyond paddle-wheel effect," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Daems, K. & Yadav, P. & Dermenci, K.B. & Van Mierlo, J. & Berecibar, M., 2024. "Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    16. Simon Batzner & Albert Musaelian & Lixin Sun & Mario Geiger & Jonathan P. Mailoa & Mordechai Kornbluth & Nicola Molinari & Tess E. Smidt & Boris Kozinsky, 2022. "E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Xiaowei Chi & Ye Zhang & Fang Hao & Steven Kmiec & Hui Dong & Rong Xu & Kejie Zhao & Qing Ai & Tanguy Terlier & Liang Wang & Lihong Zhao & Liqun Guo & Jun Lou & Huolin L. Xin & Steve W. Martin & Yan Y, 2022. "An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Albert Musaelian & Simon Batzner & Anders Johansson & Lixin Sun & Cameron J. Owen & Mordechai Kornbluth & Boris Kozinsky, 2023. "Learning local equivariant representations for large-scale atomistic dynamics," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48712-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.