IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15893.html
   My bibliography  Save this article

Origin of fast ion diffusion in super-ionic conductors

Author

Listed:
  • Xingfeng He

    (University of Maryland)

  • Yizhou Zhu

    (University of Maryland)

  • Yifei Mo

    (University of Maryland
    University of Maryland Energy Research Center, University of Maryland)

Abstract

Super-ionic conductor materials have great potential to enable novel technologies in energy storage and conversion. However, it is not yet understood why only a few materials can deliver exceptionally higher ionic conductivity than typical solids or how one can design fast ion conductors following simple principles. Using ab initio modelling, here we show that fast diffusion in super-ionic conductors does not occur through isolated ion hopping as is typical in solids, but instead proceeds through concerted migrations of multiple ions with low energy barriers. Furthermore, we elucidate that the low energy barriers of the concerted ionic diffusion are a result of unique mobile ion configurations and strong mobile ion interactions in super-ionic conductors. Our results provide a general framework and universal strategy to design solid materials with fast ionic diffusion.

Suggested Citation

  • Xingfeng He & Yizhou Zhu & Yifei Mo, 2017. "Origin of fast ion diffusion in super-ionic conductors," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15893
    DOI: 10.1038/ncomms15893
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15893
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Yu & Wencai Ren, 2023. "2D CdPS3-based versatile superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Romo Jiménez, Oscar Arturo & Noda, René López & Portelles, J. & Vázquez Arce, Jorge Luis & Iñiguez, Enrique & López Mercado, Cesar Alberto & Solorio, Fernando & Rebellon, Julia & Read, John & Tiznado,, 2022. "The effect of temperature and bias on the energy storage of a Ru/YSZ/Ru thin-film device," Energy, Elsevier, vol. 253(C).
    3. Youyou Lu & Xuan Zhang & Liyan Zhao & Hong Liu & Mi Yan & Xiaochen Zhang & Kenji Mochizuki & Shikuan Yang, 2023. "Metal-organic framework template-guided electrochemical lithography on substrates for SERS sensing applications," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. So Takamoto & Chikashi Shinagawa & Daisuke Motoki & Kosuke Nakago & Wenwen Li & Iori Kurata & Taku Watanabe & Yoshihiro Yayama & Hiroki Iriguchi & Yusuke Asano & Tasuku Onodera & Takafumi Ishii & Taka, 2022. "Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Zeyu Deng & Tara P. Mishra & Eunike Mahayoni & Qianli Ma & Aaron Jue Kang Tieu & Olivier Guillon & Jean-Noël Chotard & Vincent Seznec & Anthony K. Cheetham & Christian Masquelier & Gopalakrishnan Sai , 2022. "Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Zhichen Xue & Nikhil Sharma & Feixiang Wu & Piero Pianetta & Feng Lin & Luxi Li & Kejie Zhao & Yijin Liu, 2023. "Asynchronous domain dynamics and equilibration in layered oxide battery cathode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Pushun Lu & Yu Xia & Guochen Sun & Dengxu Wu & Siyuan Wu & Wenlin Yan & Xiang Zhu & Jiaze Lu & Quanhai Niu & Shaochen Shi & Zhengju Sha & Liquan Chen & Hong Li & Fan Wu, 2023. "Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+xMxAs1-xS5I (M=Si, Sn) sulfide solid electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Shuo Wang & Jiamin Fu & Yunsheng Liu & Ramanuja Srinivasan Saravanan & Jing Luo & Sixu Deng & Tsun-Kong Sham & Xueliang Sun & Yifei Mo, 2023. "Design principles for sodium superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.