IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32744-9.html
   My bibliography  Save this article

Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle

Author

Listed:
  • Philipp Keller

    (ETH Zurich)

  • Michael A. Reiter

    (ETH Zurich)

  • Patrick Kiefer

    (ETH Zurich)

  • Thomas Gassler

    (ETH Zurich)

  • Lucas Hemmerle

    (ETH Zurich
    Ecole Polytechnique Fédérale de Lausanne)

  • Philipp Christen

    (ETH Zurich)

  • Elad Noor

    (Weizmann Institute of Science)

  • Julia A. Vorholt

    (ETH Zurich)

Abstract

Methanol is a liquid with high energy storage capacity that holds promise as an alternative substrate to replace sugars in the biotechnology industry. It can be produced from CO2 or methane and its use does not compete with food and animal feed production. However, there are currently only limited biotechnological options for the valorization of methanol, which hinders its widespread adoption. Here, we report the conversion of the industrial platform organism Escherichia coli into a synthetic methylotroph that assimilates methanol via the energy efficient ribulose monophosphate cycle. Methylotrophy is achieved after evolution of a methanol-dependent E. coli strain over 250 generations in continuous chemostat culture. We demonstrate growth on methanol and biomass formation exclusively from the one-carbon source by 13C isotopic tracer analysis. In line with computational modeling, the methylotrophic E. coli strain optimizes methanol oxidation by upregulation of an improved methanol dehydrogenase, increasing ribulose monophosphate cycle activity, channeling carbon flux through the Entner-Doudoroff pathway and downregulating tricarboxylic acid cycle enzymes. En route towards sustainable bioproduction processes, our work lays the foundation for the efficient utilization of methanol as the dominant carbon and energy resource.

Suggested Citation

  • Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32744-9
    DOI: 10.1038/s41467-022-32744-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32744-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32744-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthias S. Frei & Cecilia Mondelli & Rodrigo García-Muelas & Klara S. Kley & Begoña Puértolas & Núria López & Olga V. Safonova & Joseph A. Stewart & Daniel Curulla Ferré & Javier Pérez-Ramírez, 2019. "Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Fabian Meyer & Philipp Keller & Johannes Hartl & Olivier G. Gröninger & Patrick Kiefer & Julia A. Vorholt, 2018. "Methanol-essential growth of Escherichia coli," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Yueshen Wu & Zhan Jiang & Xu Lu & Yongye Liang & Hailiang Wang, 2019. "Domino electroreduction of CO2 to methanol on a molecular catalyst," Nature, Nature, vol. 575(7784), pages 639-642, November.
    4. Philipp Keller & Elad Noor & Fabian Meyer & Michael A. Reiter & Stanislav Anastassov & Patrick Kiefer & Julia A. Vorholt, 2020. "Methanol-dependent Escherichia coli strains with a complete ribulose monophosphate cycle," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Junjun Shan & Mengwei Li & Lawrence F. Allard & Sungsik Lee & Maria Flytzani-Stephanopoulos, 2017. "Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts," Nature, Nature, vol. 551(7682), pages 605-608, November.
    6. Andrey W. Petrov & Davide Ferri & Frank Krumeich & Maarten Nachtegaal & Jeroen A. van Bokhoven & Oliver Kröcher, 2018. "Stable complete methane oxidation over palladium based zeolite catalysts," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    7. Benjamin M. Woolston & Jason R. King & Michael Reiter & Bob Van Hove & Gregory Stephanopoulos, 2018. "Improving formaldehyde consumption drives methanol assimilation in engineered E. coli," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    8. Elad Herz & Niv Antonovsky & Yinon Bar-On & Dan Davidi & Shmuel Gleizer & Noam Prywes & Lianet Noda-Garcia & Keren Lyn Frisch & Yehudit Zohar & David G. Wernick & Alon Savidor & Uri Barenholz & Ron Mi, 2017. "The genetic basis for the adaptation of E. coli to sugar synthesis from CO2," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong Wu & Paul A. Gómez-Coronado & Armin Kubis & Steffen N. Lindner & Philippe Marlière & Tobias J. Erb & Arren Bar-Even & Hai He, 2023. "Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Liang-Yu Nieh & Frederic Y.-H. Chen & Hsin-Wei Jung & Kuan-Yu Su & Chao-Yin Tsuei & Chun-Ting Lin & Yue-Qi Lee & James C. Liao, 2024. "Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Simone Bachleitner & Özge Ata & Diethard Mattanovich, 2023. "The potential of CO2-based production cycles in biotechnology to fight the climate crisis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yeonhwa Yu & Yongfan Shi & Young Wan Kwon & Yoobin Choi & Yusik Kim & Jeong-Geol Na & June Huh & Jeewon Lee, 2024. "A rationally designed miniature of soluble methane monooxygenase enables rapid and high-yield methanol production in Escherichia coli," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Enrico Orsi & Pablo Ivan Nikel & Lars Keld Nielsen & Stefano Donati, 2023. "Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Cong Zhang & Di-Fei Zhou & Meng-Ying Wang & Ya-Zhen Song & Chong Zhang & Ming-Ming Zhang & Jing Sun & Lu Yao & Xu-Hua Mo & Zeng-Xin Ma & Xiao-Jie Yuan & Yi Shao & Hao-Ran Wang & Si-Han Dong & Kai Bao , 2024. "Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Maren Nattermann & Sebastian Wenk & Pascal Pfister & Hai He & Seung Hwan Lee & Witold Szymanski & Nils Guntermann & Fayin Zhu & Lennart Nickel & Charlotte Wallner & Jan Zarzycki & Nicole Paczia & Nina, 2023. "Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Bernd M. Mitic & Christina Troyer & Lisa Lutz & Michael Baumschabl & Stephan Hann & Diethard Mattanovich, 2023. "The oxygen-tolerant reductive glycine pathway assimilates methanol, formate and CO2 in the yeast Komagataella phaffii," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cláudio J. R. Frazão & Nils Wagner & Kenny Rabe & Thomas Walther, 2023. "Construction of a synthetic metabolic pathway for biosynthesis of 2,4-dihydroxybutyric acid from ethylene glycol," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Enrico Orsi & Pablo Ivan Nikel & Lars Keld Nielsen & Stefano Donati, 2023. "Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Liang-Yu Nieh & Frederic Y.-H. Chen & Hsin-Wei Jung & Kuan-Yu Su & Chao-Yin Tsuei & Chun-Ting Lin & Yue-Qi Lee & James C. Liao, 2024. "Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Shunsaku Yasumura & Kenichiro Saita & Takumi Miyakage & Ken Nagai & Kenichi Kon & Takashi Toyao & Zen Maeno & Tetsuya Taketsugu & Ken-ichi Shimizu, 2023. "Designing main-group catalysts for low-temperature methane combustion by ozone," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Shengnan Yue & C. S. Praveen & Alexander Klyushin & Alexey Fedorov & Masahiro Hashimoto & Qian Li & Travis Jones & Panpan Liu & Wenqian Yu & Marc-Georg Willinger & Xing Huang, 2024. "Redox dynamics and surface structures of an active palladium catalyst during methane oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Haozhou Yang & Na Guo & Shibo Xi & Yao Wu & Bingqing Yao & Qian He & Chun Zhang & Lei Wang, 2024. "Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Luning Chen & Pragya Verma & Kaipeng Hou & Zhiyuan Qi & Shuchen Zhang & Yi-Sheng Liu & Jinghua Guo & Vitalie Stavila & Mark D. Allendorf & Lansun Zheng & Miquel Salmeron & David Prendergast & Gabor A., 2022. "Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Thaylan Pinheiro Araújo & Georgios Giannakakis & Jordi Morales-Vidal & Mikhail Agrachev & Zaira Ruiz-Bernal & Phil Preikschas & Tangsheng Zou & Frank Krumeich & Patrik O. Willi & Wendelin J. Stark & R, 2024. "Low-nuclearity CuZn ensembles on ZnZrOx catalyze methanol synthesis from CO2," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Núria. J. Divins & Andrea Braga & Xavier Vendrell & Isabel Serrano & Xènia Garcia & Lluís Soler & Ilaria Lucentini & Maila Danielis & Andrea Mussio & Sara Colussi & Ignacio J. Villar-Garcia & Carlos E, 2022. "Investigation of the evolution of Pd-Pt supported on ceria for dry and wet methane oxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Bin Li & Jiali Mu & Guifa Long & Xiangen Song & Ende Huang & Siyue Liu & Yao Wei & Fanfei Sun & Siquan Feng & Qiao Yuan & Yutong Cai & Jian Song & Wenrui Dong & Weiqing Zhang & Xueming Yang & Li Yan &, 2024. "Water-participated mild oxidation of ethane to acetaldehyde," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Xinyi Ren & Jian Zhao & Xuning Li & Junming Shao & Binbin Pan & Aude Salamé & Etienne Boutin & Thomas Groizard & Shifu Wang & Jie Ding & Xiong Zhang & Wen-Yang Huang & Wen-Jing Zeng & Chengyu Liu & Ya, 2023. "In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Mohamedali, Mohanned & Ayodele, Olumide & Ibrahim, Hussameldin, 2020. "Challenges and prospects for the photocatalytic liquefaction of methane into oxygenated hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. He, Li & Fan, Yilin & Bellettre, Jérôme & Yue, Jun & Luo, Lingai, 2020. "A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Han Li & Leitao Xu & Shuowen Bo & Yujie Wang & Han Xu & Chen Chen & Ruping Miao & Dawei Chen & Kefan Zhang & Qinghua Liu & Jingjun Shen & Huaiyu Shao & Jianfeng Jia & Shuangyin Wang, 2024. "Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Wenjun Fan & Zhiyao Duan & Wei Liu & Rashid Mehmood & Jiating Qu & Yucheng Cao & Xiangyang Guo & Jun Zhong & Fuxiang Zhang, 2023. "Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Yu Yang & Cheng Zhang & Chengyi Zhang & Yaohui Shi & Jun Li & Bernt Johannessen & Yongxiang Liang & Shuzhen Zhang & Qiang Song & Haowei Zhang & Jialei Huang & Jingwen Ke & Lei Zhang & Qingqing Song & , 2024. "Ligand-tuning copper in coordination polymers for efficient electrochemical C–C coupling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32744-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.