IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50342-9.html
   My bibliography  Save this article

Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth

Author

Listed:
  • Cong Zhang

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Di-Fei Zhou

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Meng-Ying Wang

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Ya-Zhen Song

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Chong Zhang

    (Tsinghua University
    Tsinghua University)

  • Ming-Ming Zhang

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Jing Sun

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Lu Yao

    (Chinese Academy of Agricultural Sciences)

  • Xu-Hua Mo

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Zeng-Xin Ma

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Xiao-Jie Yuan

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Yi Shao

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Hao-Ran Wang

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Si-Han Dong

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

  • Kai Bao

    (Hubei University)

  • Shu-Huan Lu

    (CABIO Biotech (Wuhan) Co. Ltd.)

  • Martin Sadilek

    (University of Washington)

  • Marina G. Kalyuzhnaya

    (San Diego State University)

  • Xin-Hui Xing

    (Tsinghua University
    Tsinghua University
    Tsinghua Shenzhen International Graduate School
    Shenzhen Bay Laboratory)

  • Song Yang

    (Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University
    Qingdao Agricultural University)

Abstract

The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.

Suggested Citation

  • Cong Zhang & Di-Fei Zhou & Meng-Ying Wang & Ya-Zhen Song & Chong Zhang & Ming-Ming Zhang & Jing Sun & Lu Yao & Xu-Hua Mo & Zeng-Xin Ma & Xiao-Jie Yuan & Yi Shao & Hao-Ran Wang & Si-Han Dong & Kai Bao , 2024. "Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50342-9
    DOI: 10.1038/s41467-024-50342-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50342-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50342-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew W. Senior & Richard Evans & John Jumper & James Kirkpatrick & Laurent Sifre & Tim Green & Chongli Qin & Augustin Žídek & Alexander W. R. Nelson & Alex Bridgland & Hugo Penedones & Stig Petersen, 2020. "Improved protein structure prediction using potentials from deep learning," Nature, Nature, vol. 577(7792), pages 706-710, January.
    2. Lucas Hemmerle & Benjamin A. Maier & Miriam Bortfeld-Miller & Birgitta Ryback & Christoph G. Gäbelein & Martin Ackermann & Julia A. Vorholt, 2022. "Dynamic character displacement among a pair of bacterial phyllosphere commensals in situ," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Elad Herz & Niv Antonovsky & Yinon Bar-On & Dan Davidi & Shmuel Gleizer & Noam Prywes & Lianet Noda-Garcia & Keren Lyn Frisch & Yehudit Zohar & David G. Wernick & Alon Savidor & Uri Barenholz & Ron Mi, 2017. "The genetic basis for the adaptation of E. coli to sugar synthesis from CO2," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrico Orsi & Pablo Ivan Nikel & Lars Keld Nielsen & Stefano Donati, 2023. "Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Tian Lan & Huan Wang & Qi An, 2024. "Enabling high throughput deep reinforcement learning with first principles to investigate catalytic reaction mechanisms," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2022. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Papers 2201.07168, arXiv.org.
    7. Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2023. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3313-3335, June.
    8. Benoit Stijlemans & Patrick Baetselier & Inge Molle & Laurence Lecordier & Erika Hendrickx & Ema Romão & Cécile Vincke & Wendy Baetens & Steve Schoonooghe & Gholamreza Hassanzadeh-Ghassabeh & Hannelie, 2024. "Q586B2 is a crucial virulence factor during the early stages of Trypanosoma brucei infection that is conserved amongst trypanosomatids," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Lisa Van den Broeck & Dinesh Kiran Bhosale & Kuncheng Song & Cássio Flavio Fonseca de Lima & Michael Ashley & Tingting Zhu & Shanshuo Zhu & Brigitte Van De Cotte & Pia Neyt & Anna C. Ortiz & Tiffany R, 2023. "Functional annotation of proteins for signaling network inference in non-model species," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Maren Nattermann & Sebastian Wenk & Pascal Pfister & Hai He & Seung Hwan Lee & Witold Szymanski & Nils Guntermann & Fayin Zhu & Lennart Nickel & Charlotte Wallner & Jan Zarzycki & Nicole Paczia & Nina, 2023. "Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Bernd M. Mitic & Christina Troyer & Lisa Lutz & Michael Baumschabl & Stephan Hann & Diethard Mattanovich, 2023. "The oxygen-tolerant reductive glycine pathway assimilates methanol, formate and CO2 in the yeast Komagataella phaffii," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Januschowski, Tim & Wang, Yuyang & Torkkola, Kari & Erkkilä, Timo & Hasson, Hilaf & Gasthaus, Jan, 2022. "Forecasting with trees," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1473-1481.
    14. Yeonhwa Yu & Yongfan Shi & Young Wan Kwon & Yoobin Choi & Yusik Kim & Jeong-Geol Na & June Huh & Jeewon Lee, 2024. "A rationally designed miniature of soluble methane monooxygenase enables rapid and high-yield methanol production in Escherichia coli," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    16. Qiufen Chen & Yuanzhao Guo & Jiuhong Jiang & Jing Qu & Li Zhang & Han Wang, 2023. "The Relative Distance Prediction of Transmembrane Protein Surface Residue Based on Improved Residual Networks," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    17. Agnese I. Curatolo & Ofer Kimchi & Carl P. Goodrich & Ryan K. Krueger & Michael P. Brenner, 2023. "A computational toolbox for the assembly yield of complex and heterogeneous structures," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Tao Ni & Qiuyao Jiang & Pei Cing Ng & Juan Shen & Hao Dou & Yanan Zhu & Julika Radecke & Gregory F. Dykes & Fang Huang & Lu-Ning Liu & Peijun Zhang, 2023. "Intrinsically disordered CsoS2 acts as a general molecular thread for α-carboxysome shell assembly," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Noelia Ferruz & Steffen Schmidt & Birte Höcker, 2022. "ProtGPT2 is a deep unsupervised language model for protein design," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50342-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.