IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32740-z.html
   My bibliography  Save this article

Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes

Author

Listed:
  • Baiyu Yang

    (Soochow University
    Soochow University)

  • Ling Chen

    (The University of Adelaide)

  • Songlin Xue

    (Soochow University)

  • Hao Sun

    (Soochow University
    Soochow University)

  • Kun Feng

    (Soochow University)

  • Yufeng Chen

    (Soochow University)

  • Xiang Zhang

    (Soochow University
    Soochow University)

  • Long Xiao

    (Soochow University
    Soochow University)

  • Yongze Qin

    (Soochow University
    Soochow University)

  • Jun Zhong

    (Soochow University)

  • Zhao Deng

    (Soochow University
    Soochow University)

  • Yan Jiao

    (The University of Adelaide)

  • Yang Peng

    (Soochow University
    Soochow University)

Abstract

Electrocatalytic reduction of CO2 into alcohols of high economic value offers a promising route to realize resourceful CO2 utilization. In this study, we choose three model bicentric copper complexes based on the expanded and fluorinated porphyrin structure, but different spatial and coordination geometry, to unravel their structure-property-performance correlation in catalyzing electrochemical CO2 reduction reactions. We show that the complexes with higher intramolecular tension and coordination asymmetry manifests a lower electrochemical stability and thus more active Cu centers, which can be reduced during electrolysis to form Cu clusters accompanied by partially-reduced or fragmented ligands. We demonstrate the hybrid structure of Cu cluster and partially reduced O-containing hexaphyrin ligand is highly potent in converting CO2 into alcohols, up to 32.5% ethanol and 18.3% n-propanol in Faradaic efficiencies that have been rarely reported. More importantly, we uncover an interplay between the inorganic and organic phases to synergistically produce alcohols, of which the intermediates are stabilized by a confined space to afford extra O-Cu bonding. This study underlines the exploitation of structure-dependent electrochemical property to steer the CO2 reduction pathway, as well as a potential generic tactic to target alcohol synthesis by constructing organic/inorganic Cu hybrids.

Suggested Citation

  • Baiyu Yang & Ling Chen & Songlin Xue & Hao Sun & Kun Feng & Yufeng Chen & Xiang Zhang & Long Xiao & Yongze Qin & Jun Zhong & Zhao Deng & Yan Jiao & Yang Peng, 2022. "Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32740-z
    DOI: 10.1038/s41467-022-32740-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32740-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32740-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen Peng & Gan Luo & Junbo Zhang & Menghuan Chen & Zhiqiang Wang & Tsun-Kong Sham & Lijuan Zhang & Yafei Li & Gengfeng Zheng, 2021. "Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Xiao Zhang & Yang Wang & Meng Gu & Maoyu Wang & Zisheng Zhang & Weiying Pan & Zhan Jiang & Hongzhi Zheng & Marcos Lucero & Hailiang Wang & George E. Sterbinsky & Qing Ma & Yang-Gang Wang & Zhenxing Fe, 2020. "Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction," Nature Energy, Nature, vol. 5(9), pages 684-692, September.
    3. Haiping Xu & Dominic Rebollar & Haiying He & Lina Chong & Yuzi Liu & Cong Liu & Cheng-Jun Sun & Tao Li & John V. Muntean & Randall E. Winans & Di-Jia Liu & Tao Xu, 2020. "Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper," Nature Energy, Nature, vol. 5(8), pages 623-632, August.
    4. Jun Li & Fanglin Che & Yuanjie Pang & Chengqin Zou & Jane Y. Howe & Thomas Burdyny & Jonathan P. Edwards & Yuhang Wang & Fengwang Li & Ziyun Wang & Phil De Luna & Cao-Thang Dinh & Tao-Tao Zhuang & Mak, 2018. "Copper adparticle enabled selective electrosynthesis of n-propanol," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Yi Xu & Fengwang Li & Aoni Xu & Jonathan P. Edwards & Sung-Fu Hung & Christine M. Gabardo & Colin P. O’Brien & Shijie Liu & Xue Wang & Yuhang Li & Joshua Wicks & Rui Kai Miao & Yuan Liu & Jun Li & Jia, 2021. "Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Yueshen Wu & Zhan Jiang & Xu Lu & Yongye Liang & Hailiang Wang, 2019. "Domino electroreduction of CO2 to methanol on a molecular catalyst," Nature, Nature, vol. 575(7784), pages 639-642, November.
    7. Xiaozhi Su & Zhuoli Jiang & Jing Zhou & Hengjie Liu & Danni Zhou & Huishan Shang & Xingming Ni & Zheng Peng & Fan Yang & Wenxing Chen & Zeming Qi & Dingsheng Wang & Yu Wang, 2022. "Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Hao Sun & Ling Chen & Likun Xiong & Kun Feng & Yufeng Chen & Xiang Zhang & Xuzhou Yuan & Baiyu Yang & Zhao Deng & Yu Liu & Mark H. Rümmeli & Jun Zhong & Yan Jiao & Yang Peng, 2021. "Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Yu Zhang & Long-Zhang Dong & Shan Li & Xin Huang & Jia-Nan Chang & Jian-Hui Wang & Jie Zhou & Shun-Li Li & Ya-Qian Lan, 2021. "Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Jingjie Wu & Sichao Ma & Jing Sun & Jake I. Gold & ChandraSekhar Tiwary & Byoungsu Kim & Lingyang Zhu & Nitin Chopra & Ihab N. Odeh & Robert Vajtai & Aaron Z. Yu & Raymond Luo & Jun Lou & Guqiao Ding , 2016. "A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    11. Zhe Weng & Yueshen Wu & Maoyu Wang & Jianbing Jiang & Ke Yang & Shengjuan Huo & Xiao-Feng Wang & Qing Ma & Gary W. Brudvig & Victor S. Batista & Yongye Liang & Zhenxing Feng & Hailiang Wang, 2018. "Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    12. Xingli Wang & Katharina Klingan & Malte Klingenhof & Tim Möller & Jorge Ferreira de Araújo & Isaac Martens & Alexander Bagger & Shan Jiang & Jan Rossmeisl & Holger Dau & Peter Strasser, 2021. "Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Yuvraj Y. Birdja & Elena Pérez-Gallent & Marta C. Figueiredo & Adrien J. Göttle & Federico Calle-Vallejo & Marc T. M. Koper, 2019. "Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels," Nature Energy, Nature, vol. 4(9), pages 732-745, September.
    14. Qinggong Zhu & Xiaofu Sun & Dexin Yang & Jun Ma & Xinchen Kang & Lirong Zheng & Jing Zhang & Zhonghua Wu & Buxing Han, 2019. "Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingyu Huang & Qiao Gu & Xiannong Tang & Dirk Lützenkirchen-Hecht & Kai Yuan & Yiwang Chen, 2024. "Experimentally validating sabatier plot by molecular level microenvironment customization for oxygen electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongxiang Liang & Jiankang Zhao & Yu Yang & Sung-Fu Hung & Jun Li & Shuzhen Zhang & Yong Zhao & An Zhang & Cheng Wang & Dominique Appadoo & Lei Zhang & Zhigang Geng & Fengwang Li & Jie Zeng, 2023. "Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Huihui Zhang & Chang Xu & Xiaowen Zhan & Yu Yu & Kaifu Zhang & Qiquan Luo & Shan Gao & Jinlong Yang & Yi Xie, 2022. "Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Janis Timoshenko & Clara Rettenmaier & Dorottya Hursán & Martina Rüscher & Eduardo Ortega & Antonia Herzog & Timon Wagner & Arno Bergmann & Uta Hejral & Aram Yoon & Andrea Martini & Eric Liberra & Mar, 2024. "Reversible metal cluster formation on Nitrogen-doped carbon controlling electrocatalyst particle size with subnanometer accuracy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Li Zhang & Xiaoju Yang & Qing Yuan & Zhiming Wei & Jie Ding & Tianshu Chu & Chao Rong & Qiao Zhang & Zhenkun Ye & Fu-Zhen Xuan & Yueming Zhai & Bowei Zhang & Xuan Yang, 2023. "Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Charles E. Creissen & Marc Fontecave, 2022. "Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    8. Kaihang Yue & Yanyang Qin & Honghao Huang & Zhuoran Lv & Mingzhi Cai & Yaqiong Su & Fuqiang Huang & Ya Yan, 2024. "Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Han Li & Leitao Xu & Shuowen Bo & Yujie Wang & Han Xu & Chen Chen & Ruping Miao & Dawei Chen & Kefan Zhang & Qinghua Liu & Jingjun Shen & Huaiyu Shao & Jianfeng Jia & Shuangyin Wang, 2024. "Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Yu Yang & Cheng Zhang & Chengyi Zhang & Yaohui Shi & Jun Li & Bernt Johannessen & Yongxiang Liang & Shuzhen Zhang & Qiang Song & Haowei Zhang & Jialei Huang & Jingwen Ke & Lei Zhang & Qingqing Song & , 2024. "Ligand-tuning copper in coordination polymers for efficient electrochemical C–C coupling," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Ruiz-López, Estela & Gandara-Loe, Jesús & Baena-Moreno, Francisco & Reina, Tomas Ramirez & Odriozola, José Antonio, 2022. "Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Jiawei Li & Hongliang Zeng & Xue Dong & Yimin Ding & Sunpei Hu & Runhao Zhang & Yizhou Dai & Peixin Cui & Zhou Xiao & Donghao Zhao & Liujiang Zhou & Tingting Zheng & Jianping Xiao & Jie Zeng & Chuan X, 2023. "Selective CO2 electrolysis to CO using isolated antimony alloyed copper," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Shifu Wang & Fuhua Li & Jian Zhao & Yaqiong Zeng & Yifan Li & Zih-Yi Lin & Tsung-Ju Lee & Shuhui Liu & Xinyi Ren & Weijue Wang & Yusen Chen & Sung-Fu Hung & Ying-Rui Lu & Yi Cui & Xiaofeng Yang & Xuni, 2024. "Manipulating C-C coupling pathway in electrochemical CO2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Cheng Du & Joel P. Mills & Asfaw G. Yohannes & Wei Wei & Lei Wang & Siyan Lu & Jian-Xiang Lian & Maoyu Wang & Tao Guo & Xiyang Wang & Hua Zhou & Cheng-Jun Sun & John Z. Wen & Brian Kendall & Martin Co, 2023. "Cascade electrocatalysis via AgCu single-atom alloy and Ag nanoparticles in CO2 electroreduction toward multicarbon products," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Zishan Han & Daliang Han & Zhe Chen & Jiachen Gao & Guangyi Jiang & Xinyu Wang & Shuaishuai Lyu & Yong Guo & Chuannan Geng & Lichang Yin & Zhe Weng & Quan-Hong Yang, 2022. "Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Yinchao Yao & Tong Shi & Wenxing Chen & Jiehua Wu & Yunying Fan & Yichun Liu & Liang Cao & Zhuo Chen, 2024. "A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Wei Liu & Pengbo Zhai & Aowen Li & Bo Wei & Kunpeng Si & Yi Wei & Xingguo Wang & Guangda Zhu & Qian Chen & Xiaokang Gu & Ruifeng Zhang & Wu Zhou & Yongji Gong, 2022. "Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Haozhou Yang & Na Guo & Shibo Xi & Yao Wu & Bingqing Yao & Qian He & Chun Zhang & Lei Wang, 2024. "Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Xinyi Ren & Jian Zhao & Xuning Li & Junming Shao & Binbin Pan & Aude Salamé & Etienne Boutin & Thomas Groizard & Shifu Wang & Jie Ding & Xiong Zhang & Wen-Yang Huang & Wen-Jing Zeng & Chengyu Liu & Ya, 2023. "In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32740-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.