IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46528-w.html
   My bibliography  Save this article

Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation

Author

Listed:
  • Ying Wang

    (Hung Hom)

  • Vinod K. Paidi

    (European Synchrotron Radiation Facility)

  • Weizhen Wang

    (The Hong Kong Polytechnic University, Hung Hom)

  • Yong Wang

    (Hung Hom)

  • Guangri Jia

    (Jilin University)

  • Tingyu Yan

    (Harbin Normal University)

  • Xiaoqiang Cui

    (Jilin University)

  • Songhua Cai

    (The Hong Kong Polytechnic University, Hung Hom)

  • Jingxiang Zhao

    (Harbin Normal University)

  • Kug-Seung Lee

    (Pohang University of Science and Technology (POSTECH))

  • Lawrence Yoon Suk Lee

    (Hung Hom
    Hung Hom)

  • Kwok-Yin Wong

    (Hung Hom)

Abstract

The precise design of single-atom nanozymes (SAzymes) and understanding of their biocatalytic mechanisms hold great promise for developing ideal bio-enzyme substitutes. While considerable efforts have been directed towards mimicking partial bio-inspired structures, the integration of heterogeneous SAzymes configurations and homogeneous enzyme-like mechanism remains an enormous challenge. Here, we show a spatial engineering strategy to fabricate dual-sites SAzymes with atomic Fe active center and adjacent Cu sites. Compared to planar Fe–Cu dual-atomic sites, vertically stacked Fe–Cu geometry in FePc@2D-Cu–N–C possesses highly optimized scaffolds, favorable substrate affinity, and fast electron transfer. These characteristics of FePc@2D-Cu–N–C SAzyme induces biomimetic O2 activation through homogenous enzymatic pathway, resembling functional and mechanistic similarity to natural cytochrome c oxidase. Furthermore, it presents an appealing alternative of cytochrome P450 3A4 for drug metabolism and drug–drug interaction. These findings are expected to deepen the fundamental understanding of atomic-level design in next-generation bio-inspired nanozymes.

Suggested Citation

  • Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46528-w
    DOI: 10.1038/s41467-024-46528-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46528-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46528-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xing Zhang & Zishan Wu & Xiao Zhang & Liewu Li & Yanyan Li & Haomin Xu & Xiaoxiao Li & Xiaolu Yu & Zisheng Zhang & Yongye Liang & Hailiang Wang, 2017. "Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    2. Yueshen Wu & Zhan Jiang & Xu Lu & Yongye Liang & Hailiang Wang, 2019. "Domino electroreduction of CO2 to methanol on a molecular catalyst," Nature, Nature, vol. 575(7784), pages 639-642, November.
    3. Shubo Tian & Qiang Fu & Wenxing Chen & Quanchen Feng & Zheng Chen & Jian Zhang & Weng-Chon Cheong & Rong Yu & Lin Gu & Juncai Dong & Jun Luo & Chen Chen & Qing Peng & Claudia Draxl & Dingsheng Wang & , 2018. "Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    4. Shaofang Zhang & Yonghui Li & Si Sun & Ling Liu & Xiaoyu Mu & Shuhu Liu & Menglu Jiao & Xinzhu Chen & Ke Chen & Huizhen Ma & Tuo Li & Xiaoyu Liu & Hao Wang & Jianning Zhang & Jiang Yang & Xiao-Dong Zh, 2022. "Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Kejun Chen & Kang Liu & Pengda An & Huangjingwei Li & Yiyang Lin & Junhua Hu & Chuankun Jia & Junwei Fu & Hongmei Li & Hui Liu & Zhang Lin & Wenzhang Li & Jiahang Li & Ying-Rui Lu & Ting-Shan Chan & N, 2020. "Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Hongzhou Yang & Lu Shang & Qinghua Zhang & Run Shi & Geoffrey I. N. Waterhouse & Lin Gu & Tierui Zhang, 2019. "A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    7. Pamela A. Williams & Jose Cosme & Alison Ward & Hayley C. Angove & Dijana Matak Vinković & Harren Jhoti, 2003. "Crystal structure of human cytochrome P450 2C9 with bound warfarin," Nature, Nature, vol. 424(6947), pages 464-468, July.
    8. Boyuan Shen & Huiqiu Wang & Hao Xiong & Xiao Chen & Eric G. T. Bosch & Ivan Lazić & Weizhong Qian & Fei Wei, 2022. "Atomic imaging of zeolite-confined single molecules by electron microscopy," Nature, Nature, vol. 607(7920), pages 703-707, July.
    9. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Haozhou Yang & Na Guo & Shibo Xi & Yao Wu & Bingqing Yao & Qian He & Chun Zhang & Lei Wang, 2024. "Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    4. Shujuan Liu & Teng Li & Feng Shi & Haiying Ma & Bin Wang & Xingchao Dai & Xinjiang Cui, 2023. "Constructing multiple active sites in iron oxide catalysts for improving carbonylation reactions," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Qiyou Wang & Kang Liu & Kangman Hu & Chao Cai & Huangjingwei Li & Hongmei Li & Matias Herran & Ying-Rui Lu & Ting-Shan Chan & Chao Ma & Junwei Fu & Shiguo Zhang & Ying Liang & Emiliano Cortés & Min Li, 2022. "Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Wenjun Fan & Zhiyao Duan & Wei Liu & Rashid Mehmood & Jiating Qu & Yucheng Cao & Xiangyang Guo & Jun Zhong & Fuxiang Zhang, 2023. "Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Hongqiang Jin & Kaixin Zhou & Ruoxi Zhang & Hongjie Cui & Yu Yu & Peixin Cui & Weiguo Song & Changyan Cao, 2023. "Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Jiabin Wu & Xianyu Zhu & Qun Li & Qiang Fu & Bingxue Wang & Beibei Li & Shanshan Wang & Qingchao Chang & Huandong Xiang & Chengliang Ye & Qiqiang Li & Liang Huang & Yan Liang & Dingsheng Wang & Yulian, 2024. "Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Peng Zhang & Hsiao-Chien Chen & Houyu Zhu & Kuo Chen & Tuya Li & Yilin Zhao & Jiaye Li & Ruanbo Hu & Siying Huang & Wei Zhu & Yunqi Liu & Yuan Pan, 2024. "Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Huihui Zhang & Chang Xu & Xiaowen Zhan & Yu Yu & Kaifu Zhang & Qiquan Luo & Shan Gao & Jinlong Yang & Yi Xie, 2022. "Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Hao Sun & Ling Chen & Likun Xiong & Kun Feng & Yufeng Chen & Xiang Zhang & Xuzhou Yuan & Baiyu Yang & Zhao Deng & Yu Liu & Mark H. Rümmeli & Jun Zhong & Yan Jiao & Yang Peng, 2021. "Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    14. Yukun Zhao & Mengyu Duan & Chaoyuan Deng & Jie Yang & Sipeng Yang & Yuchao Zhang & Hua Sheng & Youji Li & Chuncheng Chen & Jincai Zhao, 2023. "Br−/BrO−-mediated highly efficient photoelectrochemical epoxidation of alkenes on α-Fe2O3," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Shoujie Li & Wei Chen & Xiao Dong & Chang Zhu & Aohui Chen & Yanfang Song & Guihua Li & Wei Wei & Yuhan Sun, 2022. "Hierarchical micro/nanostructured silver hollow fiber boosts electroreduction of carbon dioxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Feng Wu & Xiaokang Liu & Shiqi Wang & Longfei Hu & Sebastian Kunze & Zhenggang Xue & Zehao Shen & Yaxiong Yang & Xinqiang Wang & Minghui Fan & Hongge Pan & Xiaoping Gao & Tao Yao & Yuen Wu, 2024. "Identification of K+-determined reaction pathway for facilitated kinetics of CO2 electroreduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Yanping Long & Ling Li & Tao Xu & Xizheng Wu & Yun Gao & Jianbo Huang & Chao He & Tian Ma & Lang Ma & Chong Cheng & Changsheng Zhao, 2021. "Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Songjing Zhong & Zeyu Zhang & Qinyu Zhao & Zhaoyang Yue & Cheng Xiong & Genglin Chen & Jie Wang & Linlin Li, 2024. "Lattice expansion in ruthenium nanozymes improves catalytic activity and electro-responsiveness for boosting cancer therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Shengjie Wei & Yibing Sun & Yun-Ze Qiu & Ang Li & Ching-Yu Chiang & Hai Xiao & Jieshu Qian & Yadong Li, 2023. "Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N4 sites by carbon-defect engineering," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Haibin Si & Dexin Du & Chengcheng Jiao & Yan Sun & Lu Li & Bo Tang, 2024. "Biomimetic synergistic effect of redox site and Lewis acid for construction of efficient artificial enzyme," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46528-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.