IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55502-5.html
   My bibliography  Save this article

A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts

Author

Listed:
  • Xin Meng

    (Jiangnan University)

  • Guipeng Hu

    (Jiangnan University)

  • Xiaomin Li

    (Jiangnan University)

  • Cong Gao

    (Jiangnan University)

  • Wei Song

    (Jiangnan University)

  • Wanqing Wei

    (Jiangnan University)

  • Jing Wu

    (Jiangnan University)

  • Liming Liu

    (Jiangnan University)

Abstract

Microbial utilization of methanol for valorization is an effective way to advance green bio-manufacturing technology. Although synthetic methylotrophs have been developed, strategies to enhance their cell growth rate and internal regulatory mechanism remain underexplored. In this study, we design a synthetic methanol assimilation (SMA) pathway containing only six enzymes linked to central carbon metabolism, which does not require energy and carbon emissions. Through rational design and laboratory evolution, E. coli harboring with the SMA pathway is converted into a synthetic methylotroph. By self-adjusting the expression of TOPAI (topoisomerase I inhibitor) to alleviate transcriptional-replication conflicts (TRCs), the doubling time of methylotrophic E. coli is reduced to 4.5 h, approaching that of natural methylotrophs. This work has the potential to overcome the growth limitation of C1-assimilating microbes and advance the development of a circular carbon economy.

Suggested Citation

  • Xin Meng & Guipeng Hu & Xiaomin Li & Cong Gao & Wei Song & Wanqing Wei & Jing Wu & Liming Liu, 2025. "A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55502-5
    DOI: 10.1038/s41467-024-55502-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55502-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55502-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fabian Meyer & Philipp Keller & Johannes Hartl & Olivier G. Gröninger & Patrick Kiefer & Julia A. Vorholt, 2018. "Methanol-essential growth of Escherichia coli," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Philipp Keller & Elad Noor & Fabian Meyer & Michael A. Reiter & Stanislav Anastassov & Patrick Kiefer & Julia A. Vorholt, 2020. "Methanol-dependent Escherichia coli strains with a complete ribulose monophosphate cycle," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Monica I. Espinosa & Ricardo A. Gonzalez-Garcia & Kaspar Valgepea & Manuel R. Plan & Colin Scott & Isak S. Pretorius & Esteban Marcellin & Ian T. Paulsen & Thomas C. Williams, 2020. "Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Liang-Yu Nieh & Frederic Y.-H. Chen & Hsin-Wei Jung & Kuan-Yu Su & Chao-Yin Tsuei & Chun-Ting Lin & Yue-Qi Lee & James C. Liao, 2024. "Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Charles Bou-Nader & Ankur Bothra & David N. Garboczi & Stephen H. Leppla & Jinwei Zhang, 2022. "Structural basis of R-loop recognition by the S9.6 monoclonal antibody," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Benjamin M. Woolston & Jason R. King & Michael Reiter & Bob Van Hove & Gregory Stephanopoulos, 2018. "Improving formaldehyde consumption drives methanol assimilation in engineered E. coli," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    8. Yuko Fujioka & Jahangir Md. Alam & Daisuke Noshiro & Kazunari Mouri & Toshio Ando & Yasushi Okada & Alexander I. May & Roland L. Knorr & Kuninori Suzuki & Yoshinori Ohsumi & Nobuo N. Noda, 2020. "Phase separation organizes the site of autophagosome formation," Nature, Nature, vol. 578(7794), pages 301-305, February.
    9. Hui Liu & Pei Zhou & Mengya Qi & Liang Guo & Cong Gao & Guipeng Hu & Wei Song & Jing Wu & Xiulai Chen & Jian Chen & Wei Chen & Liming Liu, 2022. "Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Hong Yu & James C. Liao, 2018. "A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    11. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    12. Dmitry Sutormin & Alina Galivondzhyan & Olga Musharova & Dmitrii Travin & Anastasiia Rusanova & Kseniya Obraztsova & Sergei Borukhov & Konstantin Severinov, 2022. "Interaction between transcribing RNA polymerase and topoisomerase I prevents R-loop formation in E. coli," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp Keller & Michael A. Reiter & Patrick Kiefer & Thomas Gassler & Lucas Hemmerle & Philipp Christen & Elad Noor & Julia A. Vorholt, 2022. "Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Liang-Yu Nieh & Frederic Y.-H. Chen & Hsin-Wei Jung & Kuan-Yu Su & Chao-Yin Tsuei & Chun-Ting Lin & Yue-Qi Lee & James C. Liao, 2024. "Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Cláudio J. R. Frazão & Nils Wagner & Kenny Rabe & Thomas Walther, 2023. "Construction of a synthetic metabolic pathway for biosynthesis of 2,4-dihydroxybutyric acid from ethylene glycol," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Bernd M. Mitic & Christina Troyer & Lisa Lutz & Michael Baumschabl & Stephan Hann & Diethard Mattanovich, 2023. "The oxygen-tolerant reductive glycine pathway assimilates methanol, formate and CO2 in the yeast Komagataella phaffii," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Enrico Orsi & Pablo Ivan Nikel & Lars Keld Nielsen & Stefano Donati, 2023. "Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Tong Wu & Paul A. Gómez-Coronado & Armin Kubis & Steffen N. Lindner & Philippe Marlière & Tobias J. Erb & Arren Bar-Even & Hai He, 2023. "Engineering a synthetic energy-efficient formaldehyde assimilation cycle in Escherichia coli," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
    8. Maxime Mistretta & Mena Cimino & Pascal Campagne & Stevenn Volant & Etienne Kornobis & Olivier Hebert & Christophe Rochais & Patrick Dallemagne & Cédric Lecoutey & Camille Tisnerat & Alban Lepailleur , 2024. "Dynamic microfluidic single-cell screening identifies pheno-tuning compounds to potentiate tuberculosis therapy," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    9. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    10. Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    12. Briardo Llorente & Thomas C. Williams & Hugh D. Goold & Isak S. Pretorius & Ian T. Paulsen, 2022. "Harnessing bioengineered microbes as a versatile platform for space nutrition," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Shuang-zhou Peng & Xiao-hui Chen & Si-jie Chen & Jie Zhang & Chuan-ying Wang & Wei-rong Liu & Duo Zhang & Ying Su & Xiao-kun Zhang, 2021. "Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    14. Maren Nattermann & Sebastian Wenk & Pascal Pfister & Hai He & Seung Hwan Lee & Witold Szymanski & Nils Guntermann & Fayin Zhu & Lennart Nickel & Charlotte Wallner & Jan Zarzycki & Nicole Paczia & Nina, 2023. "Engineering a new-to-nature cascade for phosphate-dependent formate to formaldehyde conversion in vitro and in vivo," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Weifeng Zhang & Zhuo Yang & Wenjie Wang & Qianwen Sun, 2024. "Primase promotes the competition between transcription and replication on the same template strand resulting in DNA damage," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Ali, Ghaffar & Yan, Ningyu & Hussain, Jafar & Xu, Lilai & Huang, Yunfeng & Xu, Su & Cui, Shenghui, 2019. "Quantitative assessment of energy conservation and renewable energy awareness among variant urban communities of Xiamen, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 230-238.
    17. Yeonhwa Yu & Yongfan Shi & Young Wan Kwon & Yoobin Choi & Yusik Kim & Jeong-Geol Na & June Huh & Jeewon Lee, 2024. "A rationally designed miniature of soluble methane monooxygenase enables rapid and high-yield methanol production in Escherichia coli," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Muhammad Asyraf Azni & Rasyikah Md Khalid & Umi Azmah Hasran & Siti Kartom Kamarudin, 2023. "Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    19. Eshan Karunarathne & Akila Wijethunge & Janaka Ekanayake, 2021. "Enhancing PV Hosting Capacity Using Voltage Control and Employing Dynamic Line Rating," Energies, MDPI, vol. 15(1), pages 1-19, December.
    20. Tahir, Muhammad Usman & Siraj, Kiran & Ali Shah, Syed Faizan & Arshad, Naveed, 2023. "Evaluation of single-phase net metering to meet renewable energy targets: A case study from Pakistan," Energy Policy, Elsevier, vol. 172(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55502-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.