IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v184y2023ics1364032123004185.html
   My bibliography  Save this article

Recent advances on methane partial oxidation toward oxygenates under mild conditions

Author

Listed:
  • Yang, Le
  • Lin, Hongju
  • Fang, Zhihao
  • Yang, Yanhui
  • Liu, Xiaohao
  • Ouyang, Gangfeng

Abstract

Developing a direct conversion route of methane toward oxygenates under milder conditions as a supplement to the two-step route via syngas holds high economic value and demonstrates great potential. The reactions are mostly performed below 200 °C and methane can achieve a 100% atom utilization efficiency. This review summarizes the efforts devoted to developing selective thermo-catalytic oxidation of methane to oxygenates, mainly CH3OH as well as HCHO, HCOOH, CH3COOH and C2H5OH in the past ten years. The intrinsic active site configurations and the catalytic mechanisms are disclosed within different categories of oxidants employed in the reaction system, including O2, H2O2, N2O and H2O. The specific role of H2O is also discussed. Additionally, perspectives on catalyst design and process innovation are presented. It is essential to synthesize catalysts with unitary and clear structures, despite their difficulty, to study the true structure-performance relationship, which in return provides an insight for the catalyst design. From a cost, reactivity and safety stand point, only O2 is deemed acceptable. Possible future directions of research include utilizing CO2 as oxidant or using ILs as solvent. Given the feature of direct methane conversion to methanol being a thermodynamically feasible yet kinetically unfavorable process, which exhibiting a conversion-selectivity tradeoff issue, diversifying innovation of both catalyst and reaction process would offer a solution.

Suggested Citation

  • Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004185
    DOI: 10.1016/j.rser.2023.113561
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123004185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahul Banerjee & Yegor Proshlyakov & John D. Lipscomb & Denis A. Proshlyakov, 2015. "Structure of the key species in the enzymatic oxidation of methane to methanol," Nature, Nature, vol. 518(7539), pages 431-434, February.
    2. Yingying Fan & Wencai Zhou & Xueying Qiu & Hongdong Li & Yuheng Jiang & Zhonghui Sun & Dongxue Han & Li Niu & Zhiyong Tang, 2021. "Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate," Nature Sustainability, Nature, vol. 4(6), pages 509-515, June.
    3. Junjun Shan & Mengwei Li & Lawrence F. Allard & Sungsik Lee & Maria Flytzani-Stephanopoulos, 2017. "Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts," Nature, Nature, vol. 551(7682), pages 605-608, November.
    4. Shuxing Bai & Fangfang Liu & Bolong Huang & Fan Li & Haiping Lin & Tong Wu & Mingzi Sun & Jianbo Wu & Qi Shao & Yong Xu & Xiaoqing Huang, 2020. "High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Yuanyi Zhou & Ling Zhang & Wenzhong Wang, 2019. "Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    6. Xiang Yu & Vincent Waele & Axel Löfberg & Vitaly Ordomsky & Andrei Y. Khodakov, 2019. "Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Cheng-Shiuan Li & Gérôme Melaet & Walter T. Ralston & Kwangjin An & Christopher Brooks & Yifan Ye & Yi-Sheng Liu & Junfa Zhu & Jinghua Guo & Selim Alayoglu & Gabor A. Somorjai, 2015. "High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis," Nature Communications, Nature, vol. 6(1), pages 1-5, May.
    8. Benjamin E. R. Snyder & Pieter Vanelderen & Max L. Bols & Simon D. Hallaert & Lars H. Böttger & Liviu Ungur & Kristine Pierloot & Robert A. Schoonheydt & Bert F. Sels & Edward I. Solomon, 2016. "The active site of low-temperature methane hydroxylation in iron-containing zeolites," Nature, Nature, vol. 536(7616), pages 317-321, August.
    9. Ramakrishnan Balasubramanian & Stephen M. Smith & Swati Rawat & Liliya A. Yatsunyk & Timothy L. Stemmler & Amy C. Rosenzweig, 2010. "Oxidation of methane by a biological dicopper centre," Nature, Nature, vol. 465(7294), pages 115-119, May.
    10. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Sun & Xuanye Chen & Cong Fu & Qingbo Yu & Xu-Sheng Zheng & Fei Fang & Yuanxu Liu & Junfa Zhu & Wenhua Zhang & Weixin Huang, 2022. "Molecular oxygen enhances H2O2 utilization for the photocatalytic conversion of methane to liquid-phase oxygenates," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Wenqing Zhang & Dawei Xi & Yihong Chen & Aobo Chen & Yawen Jiang & Hengjie Liu & Zeyu Zhou & Hui Zhang & Zhi Liu & Ran Long & Yujie Xiong, 2023. "Light-driven flow synthesis of acetic acid from methane with chemical looping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Jiwon Kim & Jae Hyung Kim & Cheoulwoo Oh & Hyewon Yun & Eunchong Lee & Hyung-Suk Oh & Jong Hyeok Park & Yun Jeong Hwang, 2023. "Electro-assisted methane oxidation to formic acid via in-situ cathodically generated H2O2 under ambient conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    6. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    7. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    8. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
    9. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    10. Stanislav L. Borodin & Nail G. Musakaev & Denis S. Belskikh, 2022. "Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    11. Liu, Zheng & Zheng, Junjie & Wang, Zhiyuan & Gao, Yonghai & Sun, Baojiang & Liao, Youqiang & Linga, Praveen, 2023. "Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs," Applied Energy, Elsevier, vol. 341(C).
    12. González-Arias, Judith & González-Castaño, Miriam & Sánchez, Marta Elena & Cara-Jiménez, Jorge & Arellano-García, Harvey, 2022. "Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction," Renewable Energy, Elsevier, vol. 182(C), pages 443-451.
    13. Liu, Jinxiang & Hou, Jian & Xu, Jiafang & Liu, Haiying & Chen, Gang & Zhang, Jun, 2017. "Formation of clathrate cages of sI methane hydrate revealed by ab initio study," Energy, Elsevier, vol. 120(C), pages 698-704.
    14. Zhu, Huixing & Xu, Tianfu & Yuan, Yilong & Xia, Yingli & Xin, Xin, 2020. "Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration," Applied Energy, Elsevier, vol. 275(C).
    15. Du, Hongxing & Zhang, Yiqun & Zhang, Bo & Tian, Shouceng & Li, Gensheng & Zhang, Panpan, 2023. "Study of CO2 injection to enhance gas hydrate production in multilateral wells," Energy, Elsevier, vol. 283(C).
    16. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    17. Elke Kossel & Nikolaus K. Bigalke & Christian Deusner & Matthias Haeckel, 2021. "Microscale Processes and Dynamics during CH 4 –CO 2 Guest-Molecule Exchange in Gas Hydrates," Energies, MDPI, vol. 14(6), pages 1-31, March.
    18. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    19. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    20. Fangtian Wang & Bin Zhao & Gang Li, 2018. "Prevention of Potential Hazards Associated with Marine Gas Hydrate Exploitation: A Review," Energies, MDPI, vol. 11(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.